Loading…
Photonic delay reservoir computer based on ring resonator for reconfigurable microwave waveform generator
To achieve an autonomously controlled reconfigurable microwave waveform generator, this study proposes and demonstrates a self-adjusting synthesis method based on a photonic delay reservoir computer with ring resonator. The proposed design exploits the ring resonator to configure the reservoir, faci...
Saved in:
Published in: | Optics express 2024-03, Vol.32 (7), p.12092-12103 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To achieve an autonomously controlled reconfigurable microwave waveform generator, this study proposes and demonstrates a self-adjusting synthesis method based on a photonic delay reservoir computer with ring resonator. The proposed design exploits the ring resonator to configure the reservoir, facilitating a nonlinear transformation and providing delay space. A theoretical analysis is conducted to explain how this configuration addresses the challenges of microwave waveform generation. Considering the generalization performance of waveform generation, the simulations demonstrate the system's capability to produce six distinct representative waveforms, all exhibiting a highly impressive root mean square error (RMSE) of less than 1%. To further optimize the system's flexibility and accuracy, we explore the application of various artificial intelligence algorithms at the reservoir computer's output layer. Furthermore, our investigation delves deeply into the complexities of system performance, specifically exploring the influence of reservoir neurons and micro-ring resonator parameters on calculation performance. We also delve into the scalability of reservoirs, considering both parallel and cascaded arrangements. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.518777 |