Loading…
Application of cobalt-cerium-iron ternary layered double hydroxide for extraction of perfluorooctane sulfonate followed by HPLC-MS/MS analysis
Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns...
Saved in:
Published in: | Environmental research 2024-07, Vol.252 (Pt 2), p.118838-118838, Article 118838 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 μg/L, with a linear range of 0.05–300 μg/L, the limit of quantification equal to 0.05 μg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 μL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%–105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.
•PFOS pollutant molecules were extracted using CoCeFe ternary LDH as an adsorbent.•The highly selective DSPE/HPLC-MS/MS method was applied to analyze PFOS.•Acceptable analytical parameters were obtained for the developed DSPE/HPLC-MS/MS method.•The developed DSPE/HPLC-MS/MS method was used to analyze PFOS in real samples. |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2024.118838 |