Loading…
The Novel MFG-E8-derived Oligopeptide, MOP3, Improves Outcomes in a Preclinical Murine Model of Neonatal Sepsis
Neonatal sepsis is a devastating inflammatory condition that remains a leading cause of morbidity and mortality. Milk fat globule-EGF-factor VIII (MFG-E8) is a glycoprotein that reduces inflammation, whereas extracellular cold-inducible RNA binding protein (eCIRP) worsens inflammation. This study ai...
Saved in:
Published in: | Journal of pediatric surgery 2024-07, Vol.59 (7), p.1282-1290 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neonatal sepsis is a devastating inflammatory condition that remains a leading cause of morbidity and mortality. Milk fat globule-EGF-factor VIII (MFG-E8) is a glycoprotein that reduces inflammation, whereas extracellular cold-inducible RNA binding protein (eCIRP) worsens inflammation. This study aimed to determine the therapeutic potential of a novel MFG-E8-derived oligopeptide 3 (MOP3) designed to clear eCIRP and protect against inflammation, organ injury, and mortality in neonatal sepsis.
C57BL6 mouse pups were injected intraperitoneally with cecal slurry (CS) and treated with MOP3 (20 μg/g) or vehicle. 10 h after injection, blood, lungs, and intestines were collected for analyses, and in a 7-day experiment, pups were monitored for differences in mortality.
MOP3 treatment protected septic pups from inflammation by reducing eCIRP, IL-6, TNFα, and LDH. MOP3 reduced lung and intestinal inflammation and injury as assessed by reductions in tissue mRNA levels of inflammatory markers, histopathologic injury, and apoptosis in lung and intestines. MOP3 also significantly improved 7-day overall survival for CS-septic mouse pups compared to vehicle (75% vs. 46%, respectively).
Deriving from MFG-E8 and designed to clear eCIRP, MOP3 protects against sepsis-induced inflammation, organ injury, and mortality in a preclinical model of neonatal sepsis, implicating it as an exciting potential new therapeutic.
Level 1. |
---|---|
ISSN: | 0022-3468 1531-5037 1531-5037 |
DOI: | 10.1016/j.jpedsurg.2024.03.025 |