Loading…

fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects

Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2024-05, Vol.41 (5)
Main Authors: Sendrowski, Janek, Bataillon, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733
cites cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733
container_end_page
container_issue 5
container_start_page
container_title Molecular biology and evolution
container_volume 41
creator Sendrowski, Janek
Bataillon, Thomas
description Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.
doi_str_mv 10.1093/molbev/msae070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034248221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034248221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EoqWwMiKPLG3tXP-FDdEGKlVigTmyk2sRlJ8SOwjehmfhyQhqYbpHV985w0fIJWcLzlJYNl3t8H3ZBItMsyMy5RL0nGueHpMp02MWDMyEnIXwyhgXQqlTMgEjtU6lmZKttyGusvUNzcZAbVvSrMaPytVIN63HHtsCaedpfEG6qkLsKzfEqmvH3_dXVsUWQ6Br77GI4ZyceFsHvDjcGXnO1k93D_Pt4_3m7nY7LxIl41wobaxnSekYl6V3iRaFBmNkimClUqkqUTpeWlYmBrwQAKmV3juwijsNMCPX-91d370NGGLeVKHAurYtdkPIgYFIhEkSPqKLPVr0XQg9-nzXV43tP3PO8l-D-d5gfjA4Fq4O24NrsPzH_5TBD6I-brU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034248221</pqid></control><display><type>article</type><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sendrowski, Janek ; Bataillon, Thomas</creator><contributor>Agashe, Deepa</contributor><creatorcontrib>Sendrowski, Janek ; Bataillon, Thomas ; Agashe, Deepa</creatorcontrib><description>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</description><identifier>ISSN: 0737-4038</identifier><identifier>ISSN: 1537-1719</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msae070</identifier><identifier>PMID: 38577958</identifier><language>eng</language><publisher>United States</publisher><subject>Genetic Fitness ; Models, Genetic ; Mutation ; Software</subject><ispartof>Molecular biology and evolution, 2024-05, Vol.41 (5)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</citedby><cites>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</cites><orcidid>0000-0002-4730-2538 ; 0009-0004-2873-2534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38577958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Agashe, Deepa</contributor><creatorcontrib>Sendrowski, Janek</creatorcontrib><creatorcontrib>Bataillon, Thomas</creatorcontrib><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</description><subject>Genetic Fitness</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Software</subject><issn>0737-4038</issn><issn>1537-1719</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EoqWwMiKPLG3tXP-FDdEGKlVigTmyk2sRlJ8SOwjehmfhyQhqYbpHV985w0fIJWcLzlJYNl3t8H3ZBItMsyMy5RL0nGueHpMp02MWDMyEnIXwyhgXQqlTMgEjtU6lmZKttyGusvUNzcZAbVvSrMaPytVIN63HHtsCaedpfEG6qkLsKzfEqmvH3_dXVsUWQ6Br77GI4ZyceFsHvDjcGXnO1k93D_Pt4_3m7nY7LxIl41wobaxnSekYl6V3iRaFBmNkimClUqkqUTpeWlYmBrwQAKmV3juwijsNMCPX-91d370NGGLeVKHAurYtdkPIgYFIhEkSPqKLPVr0XQg9-nzXV43tP3PO8l-D-d5gfjA4Fq4O24NrsPzH_5TBD6I-brU</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Sendrowski, Janek</creator><creator>Bataillon, Thomas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4730-2538</orcidid><orcidid>https://orcid.org/0009-0004-2873-2534</orcidid></search><sort><creationdate>20240503</creationdate><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><author>Sendrowski, Janek ; Bataillon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Genetic Fitness</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sendrowski, Janek</creatorcontrib><creatorcontrib>Bataillon, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sendrowski, Janek</au><au>Bataillon, Thomas</au><au>Agashe, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2024-05-03</date><risdate>2024</risdate><volume>41</volume><issue>5</issue><issn>0737-4038</issn><issn>1537-1719</issn><eissn>1537-1719</eissn><abstract>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</abstract><cop>United States</cop><pmid>38577958</pmid><doi>10.1093/molbev/msae070</doi><orcidid>https://orcid.org/0000-0002-4730-2538</orcidid><orcidid>https://orcid.org/0009-0004-2873-2534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2024-05, Vol.41 (5)
issn 0737-4038
1537-1719
1537-1719
language eng
recordid cdi_proquest_miscellaneous_3034248221
source Open Access: Oxford University Press Open Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Genetic Fitness
Models, Genetic
Mutation
Software
title fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=fastDFE:%20Fast%20and%20Flexible%20Inference%20of%20the%20Distribution%20of%C2%A0Fitness%20Effects&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Sendrowski,%20Janek&rft.date=2024-05-03&rft.volume=41&rft.issue=5&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msae070&rft_dat=%3Cproquest_cross%3E3034248221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034248221&rft_id=info:pmid/38577958&rfr_iscdi=true