Loading…
fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects
Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues...
Saved in:
Published in: | Molecular biology and evolution 2024-05, Vol.41 (5) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733 |
---|---|
cites | cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Molecular biology and evolution |
container_volume | 41 |
creator | Sendrowski, Janek Bataillon, Thomas |
description | Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io. |
doi_str_mv | 10.1093/molbev/msae070 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034248221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034248221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EoqWwMiKPLG3tXP-FDdEGKlVigTmyk2sRlJ8SOwjehmfhyQhqYbpHV985w0fIJWcLzlJYNl3t8H3ZBItMsyMy5RL0nGueHpMp02MWDMyEnIXwyhgXQqlTMgEjtU6lmZKttyGusvUNzcZAbVvSrMaPytVIN63HHtsCaedpfEG6qkLsKzfEqmvH3_dXVsUWQ6Br77GI4ZyceFsHvDjcGXnO1k93D_Pt4_3m7nY7LxIl41wobaxnSekYl6V3iRaFBmNkimClUqkqUTpeWlYmBrwQAKmV3juwijsNMCPX-91d370NGGLeVKHAurYtdkPIgYFIhEkSPqKLPVr0XQg9-nzXV43tP3PO8l-D-d5gfjA4Fq4O24NrsPzH_5TBD6I-brU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034248221</pqid></control><display><type>article</type><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sendrowski, Janek ; Bataillon, Thomas</creator><contributor>Agashe, Deepa</contributor><creatorcontrib>Sendrowski, Janek ; Bataillon, Thomas ; Agashe, Deepa</creatorcontrib><description>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</description><identifier>ISSN: 0737-4038</identifier><identifier>ISSN: 1537-1719</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msae070</identifier><identifier>PMID: 38577958</identifier><language>eng</language><publisher>United States</publisher><subject>Genetic Fitness ; Models, Genetic ; Mutation ; Software</subject><ispartof>Molecular biology and evolution, 2024-05, Vol.41 (5)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</citedby><cites>FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</cites><orcidid>0000-0002-4730-2538 ; 0009-0004-2873-2534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38577958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Agashe, Deepa</contributor><creatorcontrib>Sendrowski, Janek</creatorcontrib><creatorcontrib>Bataillon, Thomas</creatorcontrib><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</description><subject>Genetic Fitness</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Software</subject><issn>0737-4038</issn><issn>1537-1719</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EoqWwMiKPLG3tXP-FDdEGKlVigTmyk2sRlJ8SOwjehmfhyQhqYbpHV985w0fIJWcLzlJYNl3t8H3ZBItMsyMy5RL0nGueHpMp02MWDMyEnIXwyhgXQqlTMgEjtU6lmZKttyGusvUNzcZAbVvSrMaPytVIN63HHtsCaedpfEG6qkLsKzfEqmvH3_dXVsUWQ6Br77GI4ZyceFsHvDjcGXnO1k93D_Pt4_3m7nY7LxIl41wobaxnSekYl6V3iRaFBmNkimClUqkqUTpeWlYmBrwQAKmV3juwijsNMCPX-91d370NGGLeVKHAurYtdkPIgYFIhEkSPqKLPVr0XQg9-nzXV43tP3PO8l-D-d5gfjA4Fq4O24NrsPzH_5TBD6I-brU</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Sendrowski, Janek</creator><creator>Bataillon, Thomas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4730-2538</orcidid><orcidid>https://orcid.org/0009-0004-2873-2534</orcidid></search><sort><creationdate>20240503</creationdate><title>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</title><author>Sendrowski, Janek ; Bataillon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Genetic Fitness</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sendrowski, Janek</creatorcontrib><creatorcontrib>Bataillon, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sendrowski, Janek</au><au>Bataillon, Thomas</au><au>Agashe, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2024-05-03</date><risdate>2024</risdate><volume>41</volume><issue>5</issue><issn>0737-4038</issn><issn>1537-1719</issn><eissn>1537-1719</eissn><abstract>Estimating the distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary biology, ecology, and conservation. However, existing methods for DFE estimation suffer from limitations, such as slow computation speed and limited scalability. To address these issues, we introduce fastDFE, a Python-based software package, offering fast, and flexible DFE inference from site-frequency spectrum (SFS) data. Apart from providing efficient joint inference of multiple DFEs that share parameters, it offers the feature of introducing genomic covariates that influence the DFEs and testing their significance. To further simplify usage, fastDFE is equipped with comprehensive VCF-to-SFS parsing utilities. These include options for site filtering and stratification, as well as site-degeneracy annotation and probabilistic ancestral-allele inference. fastDFE thereby covers the entire workflow of DFE inference from the moment of acquiring a raw VCF file. Despite its Python foundation, fastDFE incorporates a full R interface, including native R visualization capabilities. The package is comprehensively tested and documented at fastdfe.readthedocs.io.</abstract><cop>United States</cop><pmid>38577958</pmid><doi>10.1093/molbev/msae070</doi><orcidid>https://orcid.org/0000-0002-4730-2538</orcidid><orcidid>https://orcid.org/0009-0004-2873-2534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2024-05, Vol.41 (5) |
issn | 0737-4038 1537-1719 1537-1719 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034248221 |
source | Open Access: Oxford University Press Open Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Genetic Fitness Models, Genetic Mutation Software |
title | fastDFE: Fast and Flexible Inference of the Distribution of Fitness Effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=fastDFE:%20Fast%20and%20Flexible%20Inference%20of%20the%20Distribution%20of%C2%A0Fitness%20Effects&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Sendrowski,%20Janek&rft.date=2024-05-03&rft.volume=41&rft.issue=5&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msae070&rft_dat=%3Cproquest_cross%3E3034248221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-4678af02db015dfb274c738859e3a56696de5b1da0d283f44339a5ffb3a61b733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034248221&rft_id=info:pmid/38577958&rfr_iscdi=true |