Loading…
Single body-coupled fiber enables chipless textile electronics
Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic chall...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2024-04, Vol.384 (6691), p.74-81 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.adk3755 |