Loading…

Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides

Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post‐synthetic modifications are required, or even a combi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-07, Vol.36 (28), p.e2400800-n/a
Main Authors: Kim, Sungyeon, Lee, Wookhee, Ko, Kyungmin, Cho, Hanbin, Cho, Hoyeon, Jeon, Seonhwa, Jeong, Changwook, Kim, Sungkyu, Ding, Feng, Suh, Joonki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3280-983a3d21c3ae7ad60c24f6fa36338dcf7685f604c69714a4e906085a171102723
container_end_page n/a
container_issue 28
container_start_page e2400800
container_title Advanced materials (Weinheim)
container_volume 36
creator Kim, Sungyeon
Lee, Wookhee
Ko, Kyungmin
Cho, Hanbin
Cho, Hoyeon
Jeon, Seonhwa
Jeong, Changwook
Kim, Sungkyu
Ding, Feng
Suh, Joonki
description Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post‐synthetic modifications are required, or even a combination of both, to ensure large‐area, pure‐phase, and low‐temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer‐scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D‐SnSe2 films with tuneable thicknesses are directly grown via metal–organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal–organic precursors and decoupled dual‐temperature regimes for high‐temperature ligand cracking and low‐temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as‐grown 2D‐SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n‐type to p‐type crossover at the wafer scale. These tailor‐made synthetic routes will accelerate the low‐thermal‐budget production of multiphase 2D materials in a reliable and scalable fashion. With phase‐tailored synthetic strategies, wafer‐scale production of tin selenides in the 2D limit is achieved via a low‐temperature metal‐organic chemical vapor deposition (MOCVD) process. Directly grown 2D‐SnSe2 exhibits outstanding crystallinity and tunable thickness, and SnSe, which has intrinsic limitations for 2D film growth, can be prepared via a phase transition, thereby retaining all of the advantages in the MOCVD‐grown product.
doi_str_mv 10.1002/adma.202400800
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078793195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-983a3d21c3ae7ad60c24f6fa36338dcf7685f604c69714a4e906085a171102723</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRtF62LiXgxk3qmfvMsrT1AopCqy7DODmhkTSpMy3SnY_gM_okprQquHF14PD9Pz8fIccUuhSAnbt86roMmAAwAFukQyWjqQArt0kHLJepVcLskf0YXwDAKlC7ZI8babnQtEMe7icu4uf7Rx_reSh9cnvXfxwkw9o9V5gno2U9n-C8_fdms9A4P8GYFE1InlyBoY2NvKswYYNkXNbJCCusyxzjIdkpXBXxaHMPyMPFcNy_Sm_uLq_7vZvUc2YgtYY7njPquUPtcgWeiUIVjivOTe4LrYwsFAivrKbCCbSgwEhHNaXANOMH5Gzd2257XWCcZ9MyeqwqV2OziBkHLiW3WsgWPf2DvjSLULfrWkobbTm1K6q7pnxoYgxYZLNQTl1YZhSylfBsJTz7Ed4GTja1i-cp5j_4t-EWsGvgraxw-U9d1hvc9n7LvwA0ror9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078793195</pqid></control><display><type>article</type><title>Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kim, Sungyeon ; Lee, Wookhee ; Ko, Kyungmin ; Cho, Hanbin ; Cho, Hoyeon ; Jeon, Seonhwa ; Jeong, Changwook ; Kim, Sungkyu ; Ding, Feng ; Suh, Joonki</creator><creatorcontrib>Kim, Sungyeon ; Lee, Wookhee ; Ko, Kyungmin ; Cho, Hanbin ; Cho, Hoyeon ; Jeon, Seonhwa ; Jeong, Changwook ; Kim, Sungkyu ; Ding, Feng ; Suh, Joonki</creatorcontrib><description>Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post‐synthetic modifications are required, or even a combination of both, to ensure large‐area, pure‐phase, and low‐temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer‐scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D‐SnSe2 films with tuneable thicknesses are directly grown via metal–organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal–organic precursors and decoupled dual‐temperature regimes for high‐temperature ligand cracking and low‐temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as‐grown 2D‐SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n‐type to p‐type crossover at the wafer scale. These tailor‐made synthetic routes will accelerate the low‐thermal‐budget production of multiphase 2D materials in a reliable and scalable fashion. With phase‐tailored synthetic strategies, wafer‐scale production of tin selenides in the 2D limit is achieved via a low‐temperature metal‐organic chemical vapor deposition (MOCVD) process. Directly grown 2D‐SnSe2 exhibits outstanding crystallinity and tunable thickness, and SnSe, which has intrinsic limitations for 2D film growth, can be prepared via a phase transition, thereby retaining all of the advantages in the MOCVD‐grown product.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400800</identifier><identifier>PMID: 38593471</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Film growth ; Film thickness ; low‐temperature deposition ; Metalorganic chemical vapor deposition ; metal–organic chemical vapor deposition ; Nucleation ; Organic chemicals ; Organic chemistry ; Phase transitions ; phase‐centric growth ; post‐transition metal chalcogenides ; Selenides ; Thin films ; Tin selenide ; tin selenides ; Two dimensional materials ; vapor‐phase synthesis</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (28), p.e2400800-n/a</ispartof><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3280-983a3d21c3ae7ad60c24f6fa36338dcf7685f604c69714a4e906085a171102723</cites><orcidid>0000-0002-0221-8447 ; 0009-0009-9232-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sungyeon</creatorcontrib><creatorcontrib>Lee, Wookhee</creatorcontrib><creatorcontrib>Ko, Kyungmin</creatorcontrib><creatorcontrib>Cho, Hanbin</creatorcontrib><creatorcontrib>Cho, Hoyeon</creatorcontrib><creatorcontrib>Jeon, Seonhwa</creatorcontrib><creatorcontrib>Jeong, Changwook</creatorcontrib><creatorcontrib>Kim, Sungkyu</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Suh, Joonki</creatorcontrib><title>Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post‐synthetic modifications are required, or even a combination of both, to ensure large‐area, pure‐phase, and low‐temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer‐scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D‐SnSe2 films with tuneable thicknesses are directly grown via metal–organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal–organic precursors and decoupled dual‐temperature regimes for high‐temperature ligand cracking and low‐temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as‐grown 2D‐SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n‐type to p‐type crossover at the wafer scale. These tailor‐made synthetic routes will accelerate the low‐thermal‐budget production of multiphase 2D materials in a reliable and scalable fashion. With phase‐tailored synthetic strategies, wafer‐scale production of tin selenides in the 2D limit is achieved via a low‐temperature metal‐organic chemical vapor deposition (MOCVD) process. Directly grown 2D‐SnSe2 exhibits outstanding crystallinity and tunable thickness, and SnSe, which has intrinsic limitations for 2D film growth, can be prepared via a phase transition, thereby retaining all of the advantages in the MOCVD‐grown product.</description><subject>2D materials</subject><subject>Film growth</subject><subject>Film thickness</subject><subject>low‐temperature deposition</subject><subject>Metalorganic chemical vapor deposition</subject><subject>metal–organic chemical vapor deposition</subject><subject>Nucleation</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>phase‐centric growth</subject><subject>post‐transition metal chalcogenides</subject><subject>Selenides</subject><subject>Thin films</subject><subject>Tin selenide</subject><subject>tin selenides</subject><subject>Two dimensional materials</subject><subject>vapor‐phase synthesis</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKw0AUhgdRtF62LiXgxk3qmfvMsrT1AopCqy7DODmhkTSpMy3SnY_gM_okprQquHF14PD9Pz8fIccUuhSAnbt86roMmAAwAFukQyWjqQArt0kHLJepVcLskf0YXwDAKlC7ZI8babnQtEMe7icu4uf7Rx_reSh9cnvXfxwkw9o9V5gno2U9n-C8_fdms9A4P8GYFE1InlyBoY2NvKswYYNkXNbJCCusyxzjIdkpXBXxaHMPyMPFcNy_Sm_uLq_7vZvUc2YgtYY7njPquUPtcgWeiUIVjivOTe4LrYwsFAivrKbCCbSgwEhHNaXANOMH5Gzd2257XWCcZ9MyeqwqV2OziBkHLiW3WsgWPf2DvjSLULfrWkobbTm1K6q7pnxoYgxYZLNQTl1YZhSylfBsJTz7Ed4GTja1i-cp5j_4t-EWsGvgraxw-U9d1hvc9n7LvwA0ror9</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, Sungyeon</creator><creator>Lee, Wookhee</creator><creator>Ko, Kyungmin</creator><creator>Cho, Hanbin</creator><creator>Cho, Hoyeon</creator><creator>Jeon, Seonhwa</creator><creator>Jeong, Changwook</creator><creator>Kim, Sungkyu</creator><creator>Ding, Feng</creator><creator>Suh, Joonki</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0221-8447</orcidid><orcidid>https://orcid.org/0009-0009-9232-6545</orcidid></search><sort><creationdate>20240701</creationdate><title>Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides</title><author>Kim, Sungyeon ; Lee, Wookhee ; Ko, Kyungmin ; Cho, Hanbin ; Cho, Hoyeon ; Jeon, Seonhwa ; Jeong, Changwook ; Kim, Sungkyu ; Ding, Feng ; Suh, Joonki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-983a3d21c3ae7ad60c24f6fa36338dcf7685f604c69714a4e906085a171102723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Film growth</topic><topic>Film thickness</topic><topic>low‐temperature deposition</topic><topic>Metalorganic chemical vapor deposition</topic><topic>metal–organic chemical vapor deposition</topic><topic>Nucleation</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>phase‐centric growth</topic><topic>post‐transition metal chalcogenides</topic><topic>Selenides</topic><topic>Thin films</topic><topic>Tin selenide</topic><topic>tin selenides</topic><topic>Two dimensional materials</topic><topic>vapor‐phase synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungyeon</creatorcontrib><creatorcontrib>Lee, Wookhee</creatorcontrib><creatorcontrib>Ko, Kyungmin</creatorcontrib><creatorcontrib>Cho, Hanbin</creatorcontrib><creatorcontrib>Cho, Hoyeon</creatorcontrib><creatorcontrib>Jeon, Seonhwa</creatorcontrib><creatorcontrib>Jeong, Changwook</creatorcontrib><creatorcontrib>Kim, Sungkyu</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Suh, Joonki</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sungyeon</au><au>Lee, Wookhee</au><au>Ko, Kyungmin</au><au>Cho, Hanbin</au><au>Cho, Hoyeon</au><au>Jeon, Seonhwa</au><au>Jeong, Changwook</au><au>Kim, Sungkyu</au><au>Ding, Feng</au><au>Suh, Joonki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>28</issue><spage>e2400800</spage><epage>n/a</epage><pages>e2400800-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post‐synthetic modifications are required, or even a combination of both, to ensure large‐area, pure‐phase, and low‐temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer‐scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D‐SnSe2 films with tuneable thicknesses are directly grown via metal–organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal–organic precursors and decoupled dual‐temperature regimes for high‐temperature ligand cracking and low‐temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as‐grown 2D‐SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n‐type to p‐type crossover at the wafer scale. These tailor‐made synthetic routes will accelerate the low‐thermal‐budget production of multiphase 2D materials in a reliable and scalable fashion. With phase‐tailored synthetic strategies, wafer‐scale production of tin selenides in the 2D limit is achieved via a low‐temperature metal‐organic chemical vapor deposition (MOCVD) process. Directly grown 2D‐SnSe2 exhibits outstanding crystallinity and tunable thickness, and SnSe, which has intrinsic limitations for 2D film growth, can be prepared via a phase transition, thereby retaining all of the advantages in the MOCVD‐grown product.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38593471</pmid><doi>10.1002/adma.202400800</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0221-8447</orcidid><orcidid>https://orcid.org/0009-0009-9232-6545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (28), p.e2400800-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3035539745
source Wiley-Blackwell Read & Publish Collection
subjects 2D materials
Film growth
Film thickness
low‐temperature deposition
Metalorganic chemical vapor deposition
metal–organic chemical vapor deposition
Nucleation
Organic chemicals
Organic chemistry
Phase transitions
phase‐centric growth
post‐transition metal chalcogenides
Selenides
Thin films
Tin selenide
tin selenides
Two dimensional materials
vapor‐phase synthesis
title Phase‐Centric MOCVD Enabled Synthetic Approaches for Wafer‐Scale 2D Tin Selenides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Centric%20MOCVD%20Enabled%20Synthetic%20Approaches%20for%20Wafer%E2%80%90Scale%202D%20Tin%20Selenides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Sungyeon&rft.date=2024-07-01&rft.volume=36&rft.issue=28&rft.spage=e2400800&rft.epage=n/a&rft.pages=e2400800-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400800&rft_dat=%3Cproquest_cross%3E3078793195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3280-983a3d21c3ae7ad60c24f6fa36338dcf7685f604c69714a4e906085a171102723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078793195&rft_id=info:pmid/38593471&rfr_iscdi=true