Loading…
Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting
The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation m...
Saved in:
Published in: | International journal of biological macromolecules 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3 |
container_end_page | 131412 |
container_issue | Pt 2 |
container_start_page | 131412 |
container_title | International journal of biological macromolecules |
container_volume | 267 |
creator | Kim, Ju Yeon Kumar, Shrestha Bishnu Park, Chan Hee Kim, Cheol Sang |
description | The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.
[Display omitted] |
doi_str_mv | 10.1016/j.ijbiomac.2024.131412 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024022177</els_id><sourcerecordid>3035539960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvLK1Q-csniiRNvfAO1tCBV4kLPluNMdr2K7WA7i8qj8LQ42pYrkiVbv_6Zf8YfIdfAtsBAfDxu7bG3wWmzrVndbIFDA_UrsoFuJyvGGH9NNqxoVQecXZB3KR2LKlro3pIL3rWSd7LZkD-3eMIpzA59pmGkBqepmvSAns6HkMMcpieH0f7GgZrgU46LyYn-svlAS7422Z6QahdisS-JGj0Zuzjq9N5jWl9FT_NBZ6RjiLQPHmm2KS1II-7RY9TZBk9PVlN-u_aco_XZ-v0VeTPqKeH75_uSPN59-XHztXr4fv_t5vNDZTi0uRJ6lCgRgO-M2UkQgLrHXvSodS1qlKNgwE05HJt2bIQeRiFka4Zd10Bn-CX5cO47x_BzwZSVs2n9B-2xrKQ4423LpRSsWMXZamJIKeKoyrBOxycFTK1c1FG9cFErF3XmUgqvnzOW3uHwr-wFRDF8OhuwbHqyGFUyFr3BwUY0WQ3B_i_jL3j2pzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035539960</pqid></control><display><type>article</type><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><source>ScienceDirect Journals</source><creator>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</creator><creatorcontrib>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</creatorcontrib><description>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.
[Display omitted]</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.131412</identifier><identifier>PMID: 38593894</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D bioprinting ; Amorphous calcium magnesium phosphate ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Bioprinting - methods ; Bone Regeneration - drug effects ; Calcium Phosphates - chemistry ; Calcium Phosphates - pharmacology ; Cell Differentiation - drug effects ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Magnesium Compounds - chemistry ; Magnesium Compounds - pharmacology ; Methacrylated gelatin ; Mice ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteogenesis ; Osteogenesis - drug effects ; Phosphates - chemistry ; Phosphates - pharmacology ; Printing, Three-Dimensional ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>International journal of biological macromolecules, 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ju Yeon</creatorcontrib><creatorcontrib>Kumar, Shrestha Bishnu</creatorcontrib><creatorcontrib>Park, Chan Hee</creatorcontrib><creatorcontrib>Kim, Cheol Sang</creatorcontrib><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.
[Display omitted]</description><subject>3D bioprinting</subject><subject>Amorphous calcium magnesium phosphate</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bioprinting - methods</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Compounds - pharmacology</subject><subject>Methacrylated gelatin</subject><subject>Mice</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Phosphates - chemistry</subject><subject>Phosphates - pharmacology</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvLK1Q-csniiRNvfAO1tCBV4kLPluNMdr2K7WA7i8qj8LQ42pYrkiVbv_6Zf8YfIdfAtsBAfDxu7bG3wWmzrVndbIFDA_UrsoFuJyvGGH9NNqxoVQecXZB3KR2LKlro3pIL3rWSd7LZkD-3eMIpzA59pmGkBqepmvSAns6HkMMcpieH0f7GgZrgU46LyYn-svlAS7422Z6QahdisS-JGj0Zuzjq9N5jWl9FT_NBZ6RjiLQPHmm2KS1II-7RY9TZBk9PVlN-u_aco_XZ-v0VeTPqKeH75_uSPN59-XHztXr4fv_t5vNDZTi0uRJ6lCgRgO-M2UkQgLrHXvSodS1qlKNgwE05HJt2bIQeRiFka4Zd10Bn-CX5cO47x_BzwZSVs2n9B-2xrKQ4423LpRSsWMXZamJIKeKoyrBOxycFTK1c1FG9cFErF3XmUgqvnzOW3uHwr-wFRDF8OhuwbHqyGFUyFr3BwUY0WQ3B_i_jL3j2pzc</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Kim, Ju Yeon</creator><creator>Kumar, Shrestha Bishnu</creator><creator>Park, Chan Hee</creator><creator>Kim, Cheol Sang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><author>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D bioprinting</topic><topic>Amorphous calcium magnesium phosphate</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bioprinting - methods</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Compounds - pharmacology</topic><topic>Methacrylated gelatin</topic><topic>Mice</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Phosphates - chemistry</topic><topic>Phosphates - pharmacology</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ju Yeon</creatorcontrib><creatorcontrib>Kumar, Shrestha Bishnu</creatorcontrib><creatorcontrib>Park, Chan Hee</creatorcontrib><creatorcontrib>Kim, Cheol Sang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ju Yeon</au><au>Kumar, Shrestha Bishnu</au><au>Park, Chan Hee</au><au>Kim, Cheol Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>267</volume><issue>Pt 2</issue><spage>131412</spage><epage>131412</epage><pages>131412-131412</pages><artnum>131412</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38593894</pmid><doi>10.1016/j.ijbiomac.2024.131412</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3035539960 |
source | ScienceDirect Journals |
subjects | 3D bioprinting Amorphous calcium magnesium phosphate Animals Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Bioprinting - methods Bone Regeneration - drug effects Calcium Phosphates - chemistry Calcium Phosphates - pharmacology Cell Differentiation - drug effects Cell Line Cell Proliferation - drug effects Cell Survival - drug effects Magnesium Compounds - chemistry Magnesium Compounds - pharmacology Methacrylated gelatin Mice Osteoblasts - cytology Osteoblasts - drug effects Osteogenesis Osteogenesis - drug effects Phosphates - chemistry Phosphates - pharmacology Printing, Three-Dimensional Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20cell-laden%20photopolymerized%20constructs%20with%20bioactive%20amorphous%20calcium%20magnesium%20phosphate%20for%20bone%20tissue%20regeneration%20via%203D%20bioprinting&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Kim,%20Ju%20Yeon&rft.date=2024-05&rft.volume=267&rft.issue=Pt%202&rft.spage=131412&rft.epage=131412&rft.pages=131412-131412&rft.artnum=131412&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.131412&rft_dat=%3Cproquest_cross%3E3035539960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035539960&rft_id=info:pmid/38593894&rfr_iscdi=true |