Loading…

Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting

The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation m...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412
Main Authors: Kim, Ju Yeon, Kumar, Shrestha Bishnu, Park, Chan Hee, Kim, Cheol Sang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3
container_end_page 131412
container_issue Pt 2
container_start_page 131412
container_title International journal of biological macromolecules
container_volume 267
creator Kim, Ju Yeon
Kumar, Shrestha Bishnu
Park, Chan Hee
Kim, Cheol Sang
description The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration. [Display omitted]
doi_str_mv 10.1016/j.ijbiomac.2024.131412
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024022177</els_id><sourcerecordid>3035539960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvLK1Q-csniiRNvfAO1tCBV4kLPluNMdr2K7WA7i8qj8LQ42pYrkiVbv_6Zf8YfIdfAtsBAfDxu7bG3wWmzrVndbIFDA_UrsoFuJyvGGH9NNqxoVQecXZB3KR2LKlro3pIL3rWSd7LZkD-3eMIpzA59pmGkBqepmvSAns6HkMMcpieH0f7GgZrgU46LyYn-svlAS7422Z6QahdisS-JGj0Zuzjq9N5jWl9FT_NBZ6RjiLQPHmm2KS1II-7RY9TZBk9PVlN-u_aco_XZ-v0VeTPqKeH75_uSPN59-XHztXr4fv_t5vNDZTi0uRJ6lCgRgO-M2UkQgLrHXvSodS1qlKNgwE05HJt2bIQeRiFka4Zd10Bn-CX5cO47x_BzwZSVs2n9B-2xrKQ4423LpRSsWMXZamJIKeKoyrBOxycFTK1c1FG9cFErF3XmUgqvnzOW3uHwr-wFRDF8OhuwbHqyGFUyFr3BwUY0WQ3B_i_jL3j2pzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035539960</pqid></control><display><type>article</type><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><source>ScienceDirect Journals</source><creator>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</creator><creatorcontrib>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</creatorcontrib><description>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration. [Display omitted]</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.131412</identifier><identifier>PMID: 38593894</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D bioprinting ; Amorphous calcium magnesium phosphate ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Bioprinting - methods ; Bone Regeneration - drug effects ; Calcium Phosphates - chemistry ; Calcium Phosphates - pharmacology ; Cell Differentiation - drug effects ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Magnesium Compounds - chemistry ; Magnesium Compounds - pharmacology ; Methacrylated gelatin ; Mice ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteogenesis ; Osteogenesis - drug effects ; Phosphates - chemistry ; Phosphates - pharmacology ; Printing, Three-Dimensional ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>International journal of biological macromolecules, 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ju Yeon</creatorcontrib><creatorcontrib>Kumar, Shrestha Bishnu</creatorcontrib><creatorcontrib>Park, Chan Hee</creatorcontrib><creatorcontrib>Kim, Cheol Sang</creatorcontrib><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration. [Display omitted]</description><subject>3D bioprinting</subject><subject>Amorphous calcium magnesium phosphate</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bioprinting - methods</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Compounds - pharmacology</subject><subject>Methacrylated gelatin</subject><subject>Mice</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Phosphates - chemistry</subject><subject>Phosphates - pharmacology</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvLK1Q-csniiRNvfAO1tCBV4kLPluNMdr2K7WA7i8qj8LQ42pYrkiVbv_6Zf8YfIdfAtsBAfDxu7bG3wWmzrVndbIFDA_UrsoFuJyvGGH9NNqxoVQecXZB3KR2LKlro3pIL3rWSd7LZkD-3eMIpzA59pmGkBqepmvSAns6HkMMcpieH0f7GgZrgU46LyYn-svlAS7422Z6QahdisS-JGj0Zuzjq9N5jWl9FT_NBZ6RjiLQPHmm2KS1II-7RY9TZBk9PVlN-u_aco_XZ-v0VeTPqKeH75_uSPN59-XHztXr4fv_t5vNDZTi0uRJ6lCgRgO-M2UkQgLrHXvSodS1qlKNgwE05HJt2bIQeRiFka4Zd10Bn-CX5cO47x_BzwZSVs2n9B-2xrKQ4423LpRSsWMXZamJIKeKoyrBOxycFTK1c1FG9cFErF3XmUgqvnzOW3uHwr-wFRDF8OhuwbHqyGFUyFr3BwUY0WQ3B_i_jL3j2pzc</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Kim, Ju Yeon</creator><creator>Kumar, Shrestha Bishnu</creator><creator>Park, Chan Hee</creator><creator>Kim, Cheol Sang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</title><author>Kim, Ju Yeon ; Kumar, Shrestha Bishnu ; Park, Chan Hee ; Kim, Cheol Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D bioprinting</topic><topic>Amorphous calcium magnesium phosphate</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bioprinting - methods</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Compounds - pharmacology</topic><topic>Methacrylated gelatin</topic><topic>Mice</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Phosphates - chemistry</topic><topic>Phosphates - pharmacology</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ju Yeon</creatorcontrib><creatorcontrib>Kumar, Shrestha Bishnu</creatorcontrib><creatorcontrib>Park, Chan Hee</creatorcontrib><creatorcontrib>Kim, Cheol Sang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ju Yeon</au><au>Kumar, Shrestha Bishnu</au><au>Park, Chan Hee</au><au>Kim, Cheol Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>267</volume><issue>Pt 2</issue><spage>131412</spage><epage>131412</epage><pages>131412-131412</pages><artnum>131412</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38593894</pmid><doi>10.1016/j.ijbiomac.2024.131412</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-05, Vol.267 (Pt 2), p.131412-131412, Article 131412
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3035539960
source ScienceDirect Journals
subjects 3D bioprinting
Amorphous calcium magnesium phosphate
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Bioprinting - methods
Bone Regeneration - drug effects
Calcium Phosphates - chemistry
Calcium Phosphates - pharmacology
Cell Differentiation - drug effects
Cell Line
Cell Proliferation - drug effects
Cell Survival - drug effects
Magnesium Compounds - chemistry
Magnesium Compounds - pharmacology
Methacrylated gelatin
Mice
Osteoblasts - cytology
Osteoblasts - drug effects
Osteogenesis
Osteogenesis - drug effects
Phosphates - chemistry
Phosphates - pharmacology
Printing, Three-Dimensional
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20cell-laden%20photopolymerized%20constructs%20with%20bioactive%20amorphous%20calcium%20magnesium%20phosphate%20for%20bone%20tissue%20regeneration%20via%203D%20bioprinting&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Kim,%20Ju%20Yeon&rft.date=2024-05&rft.volume=267&rft.issue=Pt%202&rft.spage=131412&rft.epage=131412&rft.pages=131412-131412&rft.artnum=131412&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.131412&rft_dat=%3Cproquest_cross%3E3035539960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-6af9e9e1137cc79161eabeb6beaa262e9f6013c13c3e45f46adf6695cd78418c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035539960&rft_id=info:pmid/38593894&rfr_iscdi=true