Loading…
Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima
Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplicatio...
Saved in:
Published in: | American journal of botany 2024-08, Vol.111 (8), p.e16310-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | e16310 |
container_title | American journal of botany |
container_volume | 111 |
creator | Thomas, Shawn K. Hoek, Kathryn Vanden Ogoti, Tasha Duong, Ha Angelovici, Ruthie Pires, J. Chris Mendoza‐Cozatl, David Washburn, Jacob Schenck, Craig A. |
description | Premise
The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy.
Methods
Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium.
Results
Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance.
Conclusions
These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response. |
doi_str_mv | 10.1002/ajb2.16310 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3037394763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037394763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</originalsourceid><addsrcrecordid>eNqNkc9u1DAQhy0EotvSCw-ALHFBlVL8J4k33JYVtKBKXOg5sp0J620Sp7YD2huPwBPwcDxJJ7ulhx4QJ9vyN59m5kfIS87OOWPird4acc5LydkTsuCFVJnglXpKFgx_s4oLcUSOY9zis8or8ZwcyWXJmJJiQX5f6s6Pm12CSPXQ0A3o7zvaQ9JdfEdXtJ-65P78_OV7Z5EYx-C13dDk6TQ0EGKai9IGaPAdUN_SbzDA3oQX3wNtprFzVifnB-qGPaqN88lZGlOAGNHVQdCD3Zev9Y1DUa-DS67XL8izFjuB0_vzhFx__PB1fZldfbn4tF5dZVYuC5ZJwUxeyNwWUqhSmlZwbqTGaU1riqoyohXQlkKrZVEwzstS6TZvuIFKLY0s5Ql5c_DifLcTxFT3LlroOj2An2It57VyVfD_QJlUssqxDURfP0K3fgoDDoLCOQyVsxypswNlg48xQFuPAUcPu5qzeg64ngOu9wEj_OpeOZkemgf0b6II8APwA_e4-4eqXn1-Lw7SO-WGsI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100947404</pqid></control><display><type>article</type><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><source>Wiley</source><creator>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</creator><creatorcontrib>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</creatorcontrib><description>Premise
The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy.
Methods
Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium.
Results
Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance.
Conclusions
These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</description><identifier>ISSN: 0002-9122</identifier><identifier>ISSN: 1537-2197</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.16310</identifier><identifier>PMID: 38600732</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>Abiotic stress ; amino acid ; Amino acids ; Biological evolution ; botany ; Brassica ; Cadmium ; Cakile maritima ; Cellular stress response ; evolution ; Evolutionary genetics ; free amino acids ; Gene duplication ; Gene families ; Genes ; Genomes ; Genomics ; Halophytes ; Heavy metals ; ionomics ; multiomics ; Mustard ; Polyploidy ; Raw materials ; Retention ; salt stress ; salt tolerance ; Salts ; species ; stress response ; stress tolerance ; Transport processes</subject><ispartof>American journal of botany, 2024-08, Vol.111 (8), p.e16310-n/a</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>2024 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Aug 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</cites><orcidid>0000-0001-9682-2639 ; 0000-0001-6087-746X ; 0000-0002-5711-7213 ; 0000-0002-9616-0791 ; 0000-0003-0185-7105 ; 0000-0001-5150-0695 ; 0000-0002-7813-4282 ; 0000-0002-6198-8847 ; 0000-0001-6419-3364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38600732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Shawn K.</creatorcontrib><creatorcontrib>Hoek, Kathryn Vanden</creatorcontrib><creatorcontrib>Ogoti, Tasha</creatorcontrib><creatorcontrib>Duong, Ha</creatorcontrib><creatorcontrib>Angelovici, Ruthie</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Mendoza‐Cozatl, David</creatorcontrib><creatorcontrib>Washburn, Jacob</creatorcontrib><creatorcontrib>Schenck, Craig A.</creatorcontrib><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise
The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy.
Methods
Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium.
Results
Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance.
Conclusions
These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</description><subject>Abiotic stress</subject><subject>amino acid</subject><subject>Amino acids</subject><subject>Biological evolution</subject><subject>botany</subject><subject>Brassica</subject><subject>Cadmium</subject><subject>Cakile maritima</subject><subject>Cellular stress response</subject><subject>evolution</subject><subject>Evolutionary genetics</subject><subject>free amino acids</subject><subject>Gene duplication</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Halophytes</subject><subject>Heavy metals</subject><subject>ionomics</subject><subject>multiomics</subject><subject>Mustard</subject><subject>Polyploidy</subject><subject>Raw materials</subject><subject>Retention</subject><subject>salt stress</subject><subject>salt tolerance</subject><subject>Salts</subject><subject>species</subject><subject>stress response</subject><subject>stress tolerance</subject><subject>Transport processes</subject><issn>0002-9122</issn><issn>1537-2197</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkc9u1DAQhy0EotvSCw-ALHFBlVL8J4k33JYVtKBKXOg5sp0J620Sp7YD2huPwBPwcDxJJ7ulhx4QJ9vyN59m5kfIS87OOWPird4acc5LydkTsuCFVJnglXpKFgx_s4oLcUSOY9zis8or8ZwcyWXJmJJiQX5f6s6Pm12CSPXQ0A3o7zvaQ9JdfEdXtJ-65P78_OV7Z5EYx-C13dDk6TQ0EGKai9IGaPAdUN_SbzDA3oQX3wNtprFzVifnB-qGPaqN88lZGlOAGNHVQdCD3Zev9Y1DUa-DS67XL8izFjuB0_vzhFx__PB1fZldfbn4tF5dZVYuC5ZJwUxeyNwWUqhSmlZwbqTGaU1riqoyohXQlkKrZVEwzstS6TZvuIFKLY0s5Ql5c_DifLcTxFT3LlroOj2An2It57VyVfD_QJlUssqxDURfP0K3fgoDDoLCOQyVsxypswNlg48xQFuPAUcPu5qzeg64ngOu9wEj_OpeOZkemgf0b6II8APwA_e4-4eqXn1-Lw7SO-WGsI8</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Thomas, Shawn K.</creator><creator>Hoek, Kathryn Vanden</creator><creator>Ogoti, Tasha</creator><creator>Duong, Ha</creator><creator>Angelovici, Ruthie</creator><creator>Pires, J. Chris</creator><creator>Mendoza‐Cozatl, David</creator><creator>Washburn, Jacob</creator><creator>Schenck, Craig A.</creator><general>Botanical Society of America, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6087-746X</orcidid><orcidid>https://orcid.org/0000-0002-5711-7213</orcidid><orcidid>https://orcid.org/0000-0002-9616-0791</orcidid><orcidid>https://orcid.org/0000-0003-0185-7105</orcidid><orcidid>https://orcid.org/0000-0001-5150-0695</orcidid><orcidid>https://orcid.org/0000-0002-7813-4282</orcidid><orcidid>https://orcid.org/0000-0002-6198-8847</orcidid><orcidid>https://orcid.org/0000-0001-6419-3364</orcidid></search><sort><creationdate>202408</creationdate><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><author>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>amino acid</topic><topic>Amino acids</topic><topic>Biological evolution</topic><topic>botany</topic><topic>Brassica</topic><topic>Cadmium</topic><topic>Cakile maritima</topic><topic>Cellular stress response</topic><topic>evolution</topic><topic>Evolutionary genetics</topic><topic>free amino acids</topic><topic>Gene duplication</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Halophytes</topic><topic>Heavy metals</topic><topic>ionomics</topic><topic>multiomics</topic><topic>Mustard</topic><topic>Polyploidy</topic><topic>Raw materials</topic><topic>Retention</topic><topic>salt stress</topic><topic>salt tolerance</topic><topic>Salts</topic><topic>species</topic><topic>stress response</topic><topic>stress tolerance</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Shawn K.</creatorcontrib><creatorcontrib>Hoek, Kathryn Vanden</creatorcontrib><creatorcontrib>Ogoti, Tasha</creatorcontrib><creatorcontrib>Duong, Ha</creatorcontrib><creatorcontrib>Angelovici, Ruthie</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Mendoza‐Cozatl, David</creatorcontrib><creatorcontrib>Washburn, Jacob</creatorcontrib><creatorcontrib>Schenck, Craig A.</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Shawn K.</au><au>Hoek, Kathryn Vanden</au><au>Ogoti, Tasha</au><au>Duong, Ha</au><au>Angelovici, Ruthie</au><au>Pires, J. Chris</au><au>Mendoza‐Cozatl, David</au><au>Washburn, Jacob</au><au>Schenck, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2024-08</date><risdate>2024</risdate><volume>111</volume><issue>8</issue><spage>e16310</spage><epage>n/a</epage><pages>e16310-n/a</pages><issn>0002-9122</issn><issn>1537-2197</issn><eissn>1537-2197</eissn><abstract>Premise
The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy.
Methods
Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium.
Results
Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance.
Conclusions
These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>38600732</pmid><doi>10.1002/ajb2.16310</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6087-746X</orcidid><orcidid>https://orcid.org/0000-0002-5711-7213</orcidid><orcidid>https://orcid.org/0000-0002-9616-0791</orcidid><orcidid>https://orcid.org/0000-0003-0185-7105</orcidid><orcidid>https://orcid.org/0000-0001-5150-0695</orcidid><orcidid>https://orcid.org/0000-0002-7813-4282</orcidid><orcidid>https://orcid.org/0000-0002-6198-8847</orcidid><orcidid>https://orcid.org/0000-0001-6419-3364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9122 |
ispartof | American journal of botany, 2024-08, Vol.111 (8), p.e16310-n/a |
issn | 0002-9122 1537-2197 1537-2197 |
language | eng |
recordid | cdi_proquest_miscellaneous_3037394763 |
source | Wiley |
subjects | Abiotic stress amino acid Amino acids Biological evolution botany Brassica Cadmium Cakile maritima Cellular stress response evolution Evolutionary genetics free amino acids Gene duplication Gene families Genes Genomes Genomics Halophytes Heavy metals ionomics multiomics Mustard Polyploidy Raw materials Retention salt stress salt tolerance Salts species stress response stress tolerance Transport processes |
title | Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halophytes%20and%20heavy%20metals:%20A%20multi%E2%80%90omics%20approach%20to%20understand%20the%20role%20of%20gene%20and%20genome%20duplication%20in%20the%20abiotic%20stress%20tolerance%20of%20Cakile%20maritima&rft.jtitle=American%20journal%20of%20botany&rft.au=Thomas,%20Shawn%20K.&rft.date=2024-08&rft.volume=111&rft.issue=8&rft.spage=e16310&rft.epage=n/a&rft.pages=e16310-n/a&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.16310&rft_dat=%3Cproquest_cross%3E3037394763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100947404&rft_id=info:pmid/38600732&rfr_iscdi=true |