Loading…

Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima

Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplicatio...

Full description

Saved in:
Bibliographic Details
Published in:American journal of botany 2024-08, Vol.111 (8), p.e16310-n/a
Main Authors: Thomas, Shawn K., Hoek, Kathryn Vanden, Ogoti, Tasha, Duong, Ha, Angelovici, Ruthie, Pires, J. Chris, Mendoza‐Cozatl, David, Washburn, Jacob, Schenck, Craig A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363
container_end_page n/a
container_issue 8
container_start_page e16310
container_title American journal of botany
container_volume 111
creator Thomas, Shawn K.
Hoek, Kathryn Vanden
Ogoti, Tasha
Duong, Ha
Angelovici, Ruthie
Pires, J. Chris
Mendoza‐Cozatl, David
Washburn, Jacob
Schenck, Craig A.
description Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. Methods Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. Results Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. Conclusions These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.
doi_str_mv 10.1002/ajb2.16310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3037394763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037394763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</originalsourceid><addsrcrecordid>eNqNkc9u1DAQhy0EotvSCw-ALHFBlVL8J4k33JYVtKBKXOg5sp0J620Sp7YD2huPwBPwcDxJJ7ulhx4QJ9vyN59m5kfIS87OOWPird4acc5LydkTsuCFVJnglXpKFgx_s4oLcUSOY9zis8or8ZwcyWXJmJJiQX5f6s6Pm12CSPXQ0A3o7zvaQ9JdfEdXtJ-65P78_OV7Z5EYx-C13dDk6TQ0EGKai9IGaPAdUN_SbzDA3oQX3wNtprFzVifnB-qGPaqN88lZGlOAGNHVQdCD3Zev9Y1DUa-DS67XL8izFjuB0_vzhFx__PB1fZldfbn4tF5dZVYuC5ZJwUxeyNwWUqhSmlZwbqTGaU1riqoyohXQlkKrZVEwzstS6TZvuIFKLY0s5Ql5c_DifLcTxFT3LlroOj2An2It57VyVfD_QJlUssqxDURfP0K3fgoDDoLCOQyVsxypswNlg48xQFuPAUcPu5qzeg64ngOu9wEj_OpeOZkemgf0b6II8APwA_e4-4eqXn1-Lw7SO-WGsI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100947404</pqid></control><display><type>article</type><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><source>Wiley</source><creator>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</creator><creatorcontrib>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</creatorcontrib><description>Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. Methods Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. Results Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. Conclusions These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</description><identifier>ISSN: 0002-9122</identifier><identifier>ISSN: 1537-2197</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.16310</identifier><identifier>PMID: 38600732</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>Abiotic stress ; amino acid ; Amino acids ; Biological evolution ; botany ; Brassica ; Cadmium ; Cakile maritima ; Cellular stress response ; evolution ; Evolutionary genetics ; free amino acids ; Gene duplication ; Gene families ; Genes ; Genomes ; Genomics ; Halophytes ; Heavy metals ; ionomics ; multiomics ; Mustard ; Polyploidy ; Raw materials ; Retention ; salt stress ; salt tolerance ; Salts ; species ; stress response ; stress tolerance ; Transport processes</subject><ispartof>American journal of botany, 2024-08, Vol.111 (8), p.e16310-n/a</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>2024 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Aug 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</cites><orcidid>0000-0001-9682-2639 ; 0000-0001-6087-746X ; 0000-0002-5711-7213 ; 0000-0002-9616-0791 ; 0000-0003-0185-7105 ; 0000-0001-5150-0695 ; 0000-0002-7813-4282 ; 0000-0002-6198-8847 ; 0000-0001-6419-3364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38600732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Shawn K.</creatorcontrib><creatorcontrib>Hoek, Kathryn Vanden</creatorcontrib><creatorcontrib>Ogoti, Tasha</creatorcontrib><creatorcontrib>Duong, Ha</creatorcontrib><creatorcontrib>Angelovici, Ruthie</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Mendoza‐Cozatl, David</creatorcontrib><creatorcontrib>Washburn, Jacob</creatorcontrib><creatorcontrib>Schenck, Craig A.</creatorcontrib><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. Methods Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. Results Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. Conclusions These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</description><subject>Abiotic stress</subject><subject>amino acid</subject><subject>Amino acids</subject><subject>Biological evolution</subject><subject>botany</subject><subject>Brassica</subject><subject>Cadmium</subject><subject>Cakile maritima</subject><subject>Cellular stress response</subject><subject>evolution</subject><subject>Evolutionary genetics</subject><subject>free amino acids</subject><subject>Gene duplication</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Halophytes</subject><subject>Heavy metals</subject><subject>ionomics</subject><subject>multiomics</subject><subject>Mustard</subject><subject>Polyploidy</subject><subject>Raw materials</subject><subject>Retention</subject><subject>salt stress</subject><subject>salt tolerance</subject><subject>Salts</subject><subject>species</subject><subject>stress response</subject><subject>stress tolerance</subject><subject>Transport processes</subject><issn>0002-9122</issn><issn>1537-2197</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkc9u1DAQhy0EotvSCw-ALHFBlVL8J4k33JYVtKBKXOg5sp0J620Sp7YD2huPwBPwcDxJJ7ulhx4QJ9vyN59m5kfIS87OOWPird4acc5LydkTsuCFVJnglXpKFgx_s4oLcUSOY9zis8or8ZwcyWXJmJJiQX5f6s6Pm12CSPXQ0A3o7zvaQ9JdfEdXtJ-65P78_OV7Z5EYx-C13dDk6TQ0EGKai9IGaPAdUN_SbzDA3oQX3wNtprFzVifnB-qGPaqN88lZGlOAGNHVQdCD3Zev9Y1DUa-DS67XL8izFjuB0_vzhFx__PB1fZldfbn4tF5dZVYuC5ZJwUxeyNwWUqhSmlZwbqTGaU1riqoyohXQlkKrZVEwzstS6TZvuIFKLY0s5Ql5c_DifLcTxFT3LlroOj2An2It57VyVfD_QJlUssqxDURfP0K3fgoDDoLCOQyVsxypswNlg48xQFuPAUcPu5qzeg64ngOu9wEj_OpeOZkemgf0b6II8APwA_e4-4eqXn1-Lw7SO-WGsI8</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Thomas, Shawn K.</creator><creator>Hoek, Kathryn Vanden</creator><creator>Ogoti, Tasha</creator><creator>Duong, Ha</creator><creator>Angelovici, Ruthie</creator><creator>Pires, J. Chris</creator><creator>Mendoza‐Cozatl, David</creator><creator>Washburn, Jacob</creator><creator>Schenck, Craig A.</creator><general>Botanical Society of America, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6087-746X</orcidid><orcidid>https://orcid.org/0000-0002-5711-7213</orcidid><orcidid>https://orcid.org/0000-0002-9616-0791</orcidid><orcidid>https://orcid.org/0000-0003-0185-7105</orcidid><orcidid>https://orcid.org/0000-0001-5150-0695</orcidid><orcidid>https://orcid.org/0000-0002-7813-4282</orcidid><orcidid>https://orcid.org/0000-0002-6198-8847</orcidid><orcidid>https://orcid.org/0000-0001-6419-3364</orcidid></search><sort><creationdate>202408</creationdate><title>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</title><author>Thomas, Shawn K. ; Hoek, Kathryn Vanden ; Ogoti, Tasha ; Duong, Ha ; Angelovici, Ruthie ; Pires, J. Chris ; Mendoza‐Cozatl, David ; Washburn, Jacob ; Schenck, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>amino acid</topic><topic>Amino acids</topic><topic>Biological evolution</topic><topic>botany</topic><topic>Brassica</topic><topic>Cadmium</topic><topic>Cakile maritima</topic><topic>Cellular stress response</topic><topic>evolution</topic><topic>Evolutionary genetics</topic><topic>free amino acids</topic><topic>Gene duplication</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Halophytes</topic><topic>Heavy metals</topic><topic>ionomics</topic><topic>multiomics</topic><topic>Mustard</topic><topic>Polyploidy</topic><topic>Raw materials</topic><topic>Retention</topic><topic>salt stress</topic><topic>salt tolerance</topic><topic>Salts</topic><topic>species</topic><topic>stress response</topic><topic>stress tolerance</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Shawn K.</creatorcontrib><creatorcontrib>Hoek, Kathryn Vanden</creatorcontrib><creatorcontrib>Ogoti, Tasha</creatorcontrib><creatorcontrib>Duong, Ha</creatorcontrib><creatorcontrib>Angelovici, Ruthie</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Mendoza‐Cozatl, David</creatorcontrib><creatorcontrib>Washburn, Jacob</creatorcontrib><creatorcontrib>Schenck, Craig A.</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Shawn K.</au><au>Hoek, Kathryn Vanden</au><au>Ogoti, Tasha</au><au>Duong, Ha</au><au>Angelovici, Ruthie</au><au>Pires, J. Chris</au><au>Mendoza‐Cozatl, David</au><au>Washburn, Jacob</au><au>Schenck, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2024-08</date><risdate>2024</risdate><volume>111</volume><issue>8</issue><spage>e16310</spage><epage>n/a</epage><pages>e16310-n/a</pages><issn>0002-9122</issn><issn>1537-2197</issn><eissn>1537-2197</eissn><abstract>Premise The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. Methods Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. Results Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. Conclusions These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>38600732</pmid><doi>10.1002/ajb2.16310</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6087-746X</orcidid><orcidid>https://orcid.org/0000-0002-5711-7213</orcidid><orcidid>https://orcid.org/0000-0002-9616-0791</orcidid><orcidid>https://orcid.org/0000-0003-0185-7105</orcidid><orcidid>https://orcid.org/0000-0001-5150-0695</orcidid><orcidid>https://orcid.org/0000-0002-7813-4282</orcidid><orcidid>https://orcid.org/0000-0002-6198-8847</orcidid><orcidid>https://orcid.org/0000-0001-6419-3364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9122
ispartof American journal of botany, 2024-08, Vol.111 (8), p.e16310-n/a
issn 0002-9122
1537-2197
1537-2197
language eng
recordid cdi_proquest_miscellaneous_3037394763
source Wiley
subjects Abiotic stress
amino acid
Amino acids
Biological evolution
botany
Brassica
Cadmium
Cakile maritima
Cellular stress response
evolution
Evolutionary genetics
free amino acids
Gene duplication
Gene families
Genes
Genomes
Genomics
Halophytes
Heavy metals
ionomics
multiomics
Mustard
Polyploidy
Raw materials
Retention
salt stress
salt tolerance
Salts
species
stress response
stress tolerance
Transport processes
title Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halophytes%20and%20heavy%20metals:%20A%20multi%E2%80%90omics%20approach%20to%20understand%20the%20role%20of%20gene%20and%20genome%20duplication%20in%20the%20abiotic%20stress%20tolerance%20of%20Cakile%20maritima&rft.jtitle=American%20journal%20of%20botany&rft.au=Thomas,%20Shawn%20K.&rft.date=2024-08&rft.volume=111&rft.issue=8&rft.spage=e16310&rft.epage=n/a&rft.pages=e16310-n/a&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.16310&rft_dat=%3Cproquest_cross%3E3037394763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3850-320b4534c532763bf211b3a949bfb599b2f2ef62a7855011667af4d1be978b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100947404&rft_id=info:pmid/38600732&rfr_iscdi=true