Loading…

Validation of a Caco-2 microfluidic Chip model for predicting intestinal absorption of BCS Class I-IV drugs

[Display omitted] Oral delivery is considered the most patient preferred route of drug administration, however, the drug must be sufficiently soluble and permeable to successfully formulate an oral formulation. There have been advancements in the development of more predictive solubility and dissolu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2024-05, Vol.656, p.124089-124089, Article 124089
Main Authors: Zhang, Stephanie Y., Ong, Whitney S.Y., Subelzu, Natalia, Gleeson, John P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Oral delivery is considered the most patient preferred route of drug administration, however, the drug must be sufficiently soluble and permeable to successfully formulate an oral formulation. There have been advancements in the development of more predictive solubility and dissolution tools, but the tools that has been developed for permeability assays have not been validated as extensively as the gold-standard Caco-2 Transwell assay. Here, we evaluated Caco-2 intestinal permeability assay in Transwells and a commercially available microfluidic Chip using 19 representative Biopharmaceutics Classification System (BCS) Class I-IV compounds. For each selected compound, we performed a comprehensive viability test, quantified its apparent permeability (Papp), and established an in vitro in vivo correlation (IVIVC) to the human fraction absorbed (fa) in both culture conditions. Permeability differences were observed across the models as demonstrated by antipyrine (Transwell Papp: 38.5 ± 6.1 × 10-8 cm/s vs Chip Papp: 32.9 ± 11.3 × 10-8 cm/s) and nadolol (Transwell Papp: 0.6 ± 0.1 × 10-7 cm/s vs Chip Papp: 3 ± 1.2 × 10-7 cm/s). The in vitro in vivo correlation (IVIVC; Papp vs. fa) of the Transwell model (r2 = 0.59–0.83) was similar to the Chip model (r2 = 0.41–0.79), highlighting similar levels of predictivity. Comparing to historical data, our Chip Papp data was more closely aligned to native tissues assessed in Ussing chambers. This is the first study to comprehensively validate a commercial Gut-on-a-Chip model as a predictive tool for assessing oral absorption to further reduce our reliance on animal models.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2024.124089