Loading…
Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations
We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of m...
Saved in:
Published in: | Materials 2024-04, Vol.17 (7), p.1686 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323 |
container_end_page | |
container_issue | 7 |
container_start_page | 1686 |
container_title | Materials |
container_volume | 17 |
creator | Doveiko, Daniel Martin, Alan R G Vyshemirsky, Vladislav Stebbing, Simon Kubiak-Ossowska, Karina Rolinski, Olaf Birch, David J S Chen, Yu |
description | We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical. |
doi_str_mv | 10.3390/ma17071686 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038427759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790019822</galeid><sourcerecordid>A790019822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</originalsourceid><addsrcrecordid>eNpdkVtrFTEQgIMottS--AMk4ItIt-aytzweqlWhVfC04Nsyzc4eUrLJmuyK-3P8p87h1AsmDxmGL19mMow9l-JcayPejCAb0ci6rR-xY2lMXUhTlo__iY_Yac73gpbWslXmKTvSbS2VEuKY_fwEIU6QZmc98mucU_Rxt_I48K3zzsKMmd9mF3b8xo1YfMEc_Xfs-fXiZzd5_EHx2xX5pV9iwmwxWOSb4HIk1bSe8e0I3lNmR_6vRYKVb8k6YyLnGYdAqujRLh4SiQKMzmZ6e6TE7GLIz9iTAXzG04fzhN1evru5-FBcfX7_8WJzVVhdmrloK9FokJW2PQxWguzRGGFKXcnKokSlat3fGYNSWVW2Q2-rujGN7VsQtdBKn7BXB--U4rcF89yNjtrxHgLGJXda6LZUTVMZQl_-h97HJQWqbk81VU1_WxF1fqB24LFzYaAfAUu7R-oxBhwc5TeNEUKaVu0reH24YFPMOeHQTcmNkNZOim4_7O7vsAl-8VDDcjdi_wf9PVr9C07WpSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037562205</pqid></control><display><type>article</type><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</creator><creatorcontrib>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</creatorcontrib><description>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17071686</identifier><identifier>PMID: 38612200</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcoholic beverage industry ; Alkali industry ; Anisotropy ; Chloralkali ; Diffraction ; Fluorescence ; Fluorescent dyes ; Labels ; Maximum entropy method ; Molecular dynamics ; Multiplexing ; Nanometrology ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Particle size ; Radius of curvature ; Rhodamine 6G ; Silica ; Silicates ; Simulation methods ; Small angle X ray scattering ; Sodium ; Sodium silicates ; Temperature ; Viscosity ; X-rays</subject><ispartof>Materials, 2024-04, Vol.17 (7), p.1686</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</cites><orcidid>0000-0002-2004-9456 ; 0000-0003-2427-3559 ; 0000-0002-2357-2111 ; 0000-0001-6400-1270 ; 0000-0002-0516-689X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037562205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037562205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doveiko, Daniel</creatorcontrib><creatorcontrib>Martin, Alan R G</creatorcontrib><creatorcontrib>Vyshemirsky, Vladislav</creatorcontrib><creatorcontrib>Stebbing, Simon</creatorcontrib><creatorcontrib>Kubiak-Ossowska, Karina</creatorcontrib><creatorcontrib>Rolinski, Olaf</creatorcontrib><creatorcontrib>Birch, David J S</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</description><subject>Alcoholic beverage industry</subject><subject>Alkali industry</subject><subject>Anisotropy</subject><subject>Chloralkali</subject><subject>Diffraction</subject><subject>Fluorescence</subject><subject>Fluorescent dyes</subject><subject>Labels</subject><subject>Maximum entropy method</subject><subject>Molecular dynamics</subject><subject>Multiplexing</subject><subject>Nanometrology</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size</subject><subject>Radius of curvature</subject><subject>Rhodamine 6G</subject><subject>Silica</subject><subject>Silicates</subject><subject>Simulation methods</subject><subject>Small angle X ray scattering</subject><subject>Sodium</subject><subject>Sodium silicates</subject><subject>Temperature</subject><subject>Viscosity</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtrFTEQgIMottS--AMk4ItIt-aytzweqlWhVfC04Nsyzc4eUrLJmuyK-3P8p87h1AsmDxmGL19mMow9l-JcayPejCAb0ci6rR-xY2lMXUhTlo__iY_Yac73gpbWslXmKTvSbS2VEuKY_fwEIU6QZmc98mucU_Rxt_I48K3zzsKMmd9mF3b8xo1YfMEc_Xfs-fXiZzd5_EHx2xX5pV9iwmwxWOSb4HIk1bSe8e0I3lNmR_6vRYKVb8k6YyLnGYdAqujRLh4SiQKMzmZ6e6TE7GLIz9iTAXzG04fzhN1evru5-FBcfX7_8WJzVVhdmrloK9FokJW2PQxWguzRGGFKXcnKokSlat3fGYNSWVW2Q2-rujGN7VsQtdBKn7BXB--U4rcF89yNjtrxHgLGJXda6LZUTVMZQl_-h97HJQWqbk81VU1_WxF1fqB24LFzYaAfAUu7R-oxBhwc5TeNEUKaVu0reH24YFPMOeHQTcmNkNZOim4_7O7vsAl-8VDDcjdi_wf9PVr9C07WpSk</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Doveiko, Daniel</creator><creator>Martin, Alan R G</creator><creator>Vyshemirsky, Vladislav</creator><creator>Stebbing, Simon</creator><creator>Kubiak-Ossowska, Karina</creator><creator>Rolinski, Olaf</creator><creator>Birch, David J S</creator><creator>Chen, Yu</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2004-9456</orcidid><orcidid>https://orcid.org/0000-0003-2427-3559</orcidid><orcidid>https://orcid.org/0000-0002-2357-2111</orcidid><orcidid>https://orcid.org/0000-0001-6400-1270</orcidid><orcidid>https://orcid.org/0000-0002-0516-689X</orcidid></search><sort><creationdate>20240407</creationdate><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><author>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcoholic beverage industry</topic><topic>Alkali industry</topic><topic>Anisotropy</topic><topic>Chloralkali</topic><topic>Diffraction</topic><topic>Fluorescence</topic><topic>Fluorescent dyes</topic><topic>Labels</topic><topic>Maximum entropy method</topic><topic>Molecular dynamics</topic><topic>Multiplexing</topic><topic>Nanometrology</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size</topic><topic>Radius of curvature</topic><topic>Rhodamine 6G</topic><topic>Silica</topic><topic>Silicates</topic><topic>Simulation methods</topic><topic>Small angle X ray scattering</topic><topic>Sodium</topic><topic>Sodium silicates</topic><topic>Temperature</topic><topic>Viscosity</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doveiko, Daniel</creatorcontrib><creatorcontrib>Martin, Alan R G</creatorcontrib><creatorcontrib>Vyshemirsky, Vladislav</creatorcontrib><creatorcontrib>Stebbing, Simon</creatorcontrib><creatorcontrib>Kubiak-Ossowska, Karina</creatorcontrib><creatorcontrib>Rolinski, Olaf</creatorcontrib><creatorcontrib>Birch, David J S</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doveiko, Daniel</au><au>Martin, Alan R G</au><au>Vyshemirsky, Vladislav</au><au>Stebbing, Simon</au><au>Kubiak-Ossowska, Karina</au><au>Rolinski, Olaf</au><au>Birch, David J S</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-07</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1686</spage><pages>1686-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612200</pmid><doi>10.3390/ma17071686</doi><orcidid>https://orcid.org/0000-0002-2004-9456</orcidid><orcidid>https://orcid.org/0000-0003-2427-3559</orcidid><orcidid>https://orcid.org/0000-0002-2357-2111</orcidid><orcidid>https://orcid.org/0000-0001-6400-1270</orcidid><orcidid>https://orcid.org/0000-0002-0516-689X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-04, Vol.17 (7), p.1686 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038427759 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central |
subjects | Alcoholic beverage industry Alkali industry Anisotropy Chloralkali Diffraction Fluorescence Fluorescent dyes Labels Maximum entropy method Molecular dynamics Multiplexing Nanometrology Nanoparticles NMR Nuclear magnetic resonance Particle size Radius of curvature Rhodamine 6G Silica Silicates Simulation methods Small angle X ray scattering Sodium Sodium silicates Temperature Viscosity X-rays |
title | Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20Metrology%20of%20Silicates%20Using%20Time-Resolved%20Multiplexed%20Dye%20Fluorescence%20Anisotropy,%20Small%20Angle%20X-ray%20Scattering,%20and%20Molecular%20Dynamics%20Simulations&rft.jtitle=Materials&rft.au=Doveiko,%20Daniel&rft.date=2024-04-07&rft.volume=17&rft.issue=7&rft.spage=1686&rft.pages=1686-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17071686&rft_dat=%3Cgale_proqu%3EA790019822%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037562205&rft_id=info:pmid/38612200&rft_galeid=A790019822&rfr_iscdi=true |