Loading…

Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations

We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of m...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-04, Vol.17 (7), p.1686
Main Authors: Doveiko, Daniel, Martin, Alan R G, Vyshemirsky, Vladislav, Stebbing, Simon, Kubiak-Ossowska, Karina, Rolinski, Olaf, Birch, David J S, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323
container_end_page
container_issue 7
container_start_page 1686
container_title Materials
container_volume 17
creator Doveiko, Daniel
Martin, Alan R G
Vyshemirsky, Vladislav
Stebbing, Simon
Kubiak-Ossowska, Karina
Rolinski, Olaf
Birch, David J S
Chen, Yu
description We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.
doi_str_mv 10.3390/ma17071686
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038427759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790019822</galeid><sourcerecordid>A790019822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</originalsourceid><addsrcrecordid>eNpdkVtrFTEQgIMottS--AMk4ItIt-aytzweqlWhVfC04Nsyzc4eUrLJmuyK-3P8p87h1AsmDxmGL19mMow9l-JcayPejCAb0ci6rR-xY2lMXUhTlo__iY_Yac73gpbWslXmKTvSbS2VEuKY_fwEIU6QZmc98mucU_Rxt_I48K3zzsKMmd9mF3b8xo1YfMEc_Xfs-fXiZzd5_EHx2xX5pV9iwmwxWOSb4HIk1bSe8e0I3lNmR_6vRYKVb8k6YyLnGYdAqujRLh4SiQKMzmZ6e6TE7GLIz9iTAXzG04fzhN1evru5-FBcfX7_8WJzVVhdmrloK9FokJW2PQxWguzRGGFKXcnKokSlat3fGYNSWVW2Q2-rujGN7VsQtdBKn7BXB--U4rcF89yNjtrxHgLGJXda6LZUTVMZQl_-h97HJQWqbk81VU1_WxF1fqB24LFzYaAfAUu7R-oxBhwc5TeNEUKaVu0reH24YFPMOeHQTcmNkNZOim4_7O7vsAl-8VDDcjdi_wf9PVr9C07WpSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037562205</pqid></control><display><type>article</type><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</creator><creatorcontrib>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</creatorcontrib><description>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17071686</identifier><identifier>PMID: 38612200</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcoholic beverage industry ; Alkali industry ; Anisotropy ; Chloralkali ; Diffraction ; Fluorescence ; Fluorescent dyes ; Labels ; Maximum entropy method ; Molecular dynamics ; Multiplexing ; Nanometrology ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Particle size ; Radius of curvature ; Rhodamine 6G ; Silica ; Silicates ; Simulation methods ; Small angle X ray scattering ; Sodium ; Sodium silicates ; Temperature ; Viscosity ; X-rays</subject><ispartof>Materials, 2024-04, Vol.17 (7), p.1686</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</cites><orcidid>0000-0002-2004-9456 ; 0000-0003-2427-3559 ; 0000-0002-2357-2111 ; 0000-0001-6400-1270 ; 0000-0002-0516-689X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037562205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037562205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doveiko, Daniel</creatorcontrib><creatorcontrib>Martin, Alan R G</creatorcontrib><creatorcontrib>Vyshemirsky, Vladislav</creatorcontrib><creatorcontrib>Stebbing, Simon</creatorcontrib><creatorcontrib>Kubiak-Ossowska, Karina</creatorcontrib><creatorcontrib>Rolinski, Olaf</creatorcontrib><creatorcontrib>Birch, David J S</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</description><subject>Alcoholic beverage industry</subject><subject>Alkali industry</subject><subject>Anisotropy</subject><subject>Chloralkali</subject><subject>Diffraction</subject><subject>Fluorescence</subject><subject>Fluorescent dyes</subject><subject>Labels</subject><subject>Maximum entropy method</subject><subject>Molecular dynamics</subject><subject>Multiplexing</subject><subject>Nanometrology</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size</subject><subject>Radius of curvature</subject><subject>Rhodamine 6G</subject><subject>Silica</subject><subject>Silicates</subject><subject>Simulation methods</subject><subject>Small angle X ray scattering</subject><subject>Sodium</subject><subject>Sodium silicates</subject><subject>Temperature</subject><subject>Viscosity</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtrFTEQgIMottS--AMk4ItIt-aytzweqlWhVfC04Nsyzc4eUrLJmuyK-3P8p87h1AsmDxmGL19mMow9l-JcayPejCAb0ci6rR-xY2lMXUhTlo__iY_Yac73gpbWslXmKTvSbS2VEuKY_fwEIU6QZmc98mucU_Rxt_I48K3zzsKMmd9mF3b8xo1YfMEc_Xfs-fXiZzd5_EHx2xX5pV9iwmwxWOSb4HIk1bSe8e0I3lNmR_6vRYKVb8k6YyLnGYdAqujRLh4SiQKMzmZ6e6TE7GLIz9iTAXzG04fzhN1evru5-FBcfX7_8WJzVVhdmrloK9FokJW2PQxWguzRGGFKXcnKokSlat3fGYNSWVW2Q2-rujGN7VsQtdBKn7BXB--U4rcF89yNjtrxHgLGJXda6LZUTVMZQl_-h97HJQWqbk81VU1_WxF1fqB24LFzYaAfAUu7R-oxBhwc5TeNEUKaVu0reH24YFPMOeHQTcmNkNZOim4_7O7vsAl-8VDDcjdi_wf9PVr9C07WpSk</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Doveiko, Daniel</creator><creator>Martin, Alan R G</creator><creator>Vyshemirsky, Vladislav</creator><creator>Stebbing, Simon</creator><creator>Kubiak-Ossowska, Karina</creator><creator>Rolinski, Olaf</creator><creator>Birch, David J S</creator><creator>Chen, Yu</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2004-9456</orcidid><orcidid>https://orcid.org/0000-0003-2427-3559</orcidid><orcidid>https://orcid.org/0000-0002-2357-2111</orcidid><orcidid>https://orcid.org/0000-0001-6400-1270</orcidid><orcidid>https://orcid.org/0000-0002-0516-689X</orcidid></search><sort><creationdate>20240407</creationdate><title>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</title><author>Doveiko, Daniel ; Martin, Alan R G ; Vyshemirsky, Vladislav ; Stebbing, Simon ; Kubiak-Ossowska, Karina ; Rolinski, Olaf ; Birch, David J S ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcoholic beverage industry</topic><topic>Alkali industry</topic><topic>Anisotropy</topic><topic>Chloralkali</topic><topic>Diffraction</topic><topic>Fluorescence</topic><topic>Fluorescent dyes</topic><topic>Labels</topic><topic>Maximum entropy method</topic><topic>Molecular dynamics</topic><topic>Multiplexing</topic><topic>Nanometrology</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size</topic><topic>Radius of curvature</topic><topic>Rhodamine 6G</topic><topic>Silica</topic><topic>Silicates</topic><topic>Simulation methods</topic><topic>Small angle X ray scattering</topic><topic>Sodium</topic><topic>Sodium silicates</topic><topic>Temperature</topic><topic>Viscosity</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doveiko, Daniel</creatorcontrib><creatorcontrib>Martin, Alan R G</creatorcontrib><creatorcontrib>Vyshemirsky, Vladislav</creatorcontrib><creatorcontrib>Stebbing, Simon</creatorcontrib><creatorcontrib>Kubiak-Ossowska, Karina</creatorcontrib><creatorcontrib>Rolinski, Olaf</creatorcontrib><creatorcontrib>Birch, David J S</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doveiko, Daniel</au><au>Martin, Alan R G</au><au>Vyshemirsky, Vladislav</au><au>Stebbing, Simon</au><au>Kubiak-Ossowska, Karina</au><au>Rolinski, Olaf</au><au>Birch, David J S</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-07</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1686</spage><pages>1686-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612200</pmid><doi>10.3390/ma17071686</doi><orcidid>https://orcid.org/0000-0002-2004-9456</orcidid><orcidid>https://orcid.org/0000-0003-2427-3559</orcidid><orcidid>https://orcid.org/0000-0002-2357-2111</orcidid><orcidid>https://orcid.org/0000-0001-6400-1270</orcidid><orcidid>https://orcid.org/0000-0002-0516-689X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-04, Vol.17 (7), p.1686
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3038427759
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Alcoholic beverage industry
Alkali industry
Anisotropy
Chloralkali
Diffraction
Fluorescence
Fluorescent dyes
Labels
Maximum entropy method
Molecular dynamics
Multiplexing
Nanometrology
Nanoparticles
NMR
Nuclear magnetic resonance
Particle size
Radius of curvature
Rhodamine 6G
Silica
Silicates
Simulation methods
Small angle X ray scattering
Sodium
Sodium silicates
Temperature
Viscosity
X-rays
title Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20Metrology%20of%20Silicates%20Using%20Time-Resolved%20Multiplexed%20Dye%20Fluorescence%20Anisotropy,%20Small%20Angle%20X-ray%20Scattering,%20and%20Molecular%20Dynamics%20Simulations&rft.jtitle=Materials&rft.au=Doveiko,%20Daniel&rft.date=2024-04-07&rft.volume=17&rft.issue=7&rft.spage=1686&rft.pages=1686-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17071686&rft_dat=%3Cgale_proqu%3EA790019822%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-85073a153cdafc1a1de990943515ce1e2263db99e12c248fdc56797cd8a060323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037562205&rft_id=info:pmid/38612200&rft_galeid=A790019822&rfr_iscdi=true