Loading…

Guest-Induced Reversible Single-Crystal-to-Single-Crystal Transformation Involving Displacement of 2D Layers and Spin Crossover Behavior Change in a Hofmann-Type Coordination Polymer

A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd­(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)­benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shiftin...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2024-04, Vol.63 (17), p.7746-7753
Main Authors: Hu, Xiao-Yang, Cheng, Xiang-Long, Azam, Mohammad, Liu, Fu-Ling, Sun, Di
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd­(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)­benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shifting from orthorhombic Cmmm to monoclinic C2/m involving the displacement of 2D layers. The solvent-induced SCSC transformation process was reversible and verified through powder X-ray diffraction (PXRD) and single-crystal X-ray crystallography analyses. Both 1·2CH3OH and 1·2H2O exhibit complete and abrupt spin crossover (SCO) behaviors in two steps, while their SCO temperature ranges drastically shift by ca.100 K, spanning room temperature, owing to different intermolecular interactions resulting from diverse interlayer packing manners and host–guest interactions. Besides, a structural phase transition is observed in 1·2CH3OH, contributing to the two-step spin transition.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.4c00148