Loading…

A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries

Li–O2 batteries (LOBs) possess the highest theoretical gravimetric energy density among all types of secondary batteries, but they are still far from practical applications. The poor rate performance resulting from the slow mass transfer is one of the primary obstacles in LOBs. To solve this issue,...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2403230-n/a
Main Authors: Liang, Yu‐Long, Yu, Yue, Li, Zi‐Wei, Yang, Dong‐Yue, Liu, Tong, Yan, Jun‐Min, Huang, Gang, Zhang, Xinbo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 31
container_start_page e2403230
container_title Advanced materials (Weinheim)
container_volume 36
creator Liang, Yu‐Long
Yu, Yue
Li, Zi‐Wei
Yang, Dong‐Yue
Liu, Tong
Yan, Jun‐Min
Huang, Gang
Zhang, Xinbo
description Li–O2 batteries (LOBs) possess the highest theoretical gravimetric energy density among all types of secondary batteries, but they are still far from practical applications. The poor rate performance resulting from the slow mass transfer is one of the primary obstacles in LOBs. To solve this issue, a rotating cathode with periodic changes in the electrolyte layer thickness is designed, decoupling the maximum transfer rate of Li+ and O2. During rotation, the thinner electrolyte layer on the cathode facilitates the O2 transfer, and the thicker electrolyte layer enhances the Li+ transfer. As a result, the rotating cathode enables the LOBs to undergo 58 cycles at 2.5 mA cm−2 and discharge stably even at a high current density of 7.5 mA cm−2. Besides, it also makes the batteries exhibit a large discharge capacity of 6.8 mAh cm−2, and the capacity decay is much slower with increasing current density. Notably, this rotating electrode holds great promise for utilization in other electrochemical cells involving gas‐liquid‐solid triple‐phase interfaces, suggesting a viable approach to enhance the mass transfer in such systems. It is generally believed that the rate performance of Li‒O2 batteries (LOBs) is limited by the slow mass transfer. To this end, a new type of LOB with a rotating cathode has been designed to decouple the maximum transfer rate of Li+ and O2, and consequently, the rate performance of LOBs has been significantly improved.
doi_str_mv 10.1002/adma.202403230
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038442601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086803103</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2660-27312601e2c989c3b22822c79ffa81a1894bcc069235b657c8dc050c1ad5b9183</originalsourceid><addsrcrecordid>eNpdkEFPwjAUxxujiYhePTfx4mX42m6lPSKimGAwBM9L13WsMDZcS8hufATjR-STOILx4Onln_fL_738ELol0CMA9EGla9WjQENglMEZ6pCIkiAEGZ2jDkgWBZKH4hJdObcEAMmBd9BqgGeVV96WCzxUPq9Sg3fW5_jd1LZKrVYFHuaqXBiHbYlHhdG-rorGGzxRjanxPLd6VRrncFbVeGwX-WH_NVPHvT3sv6cUPyrv2zLjrtFFpgpnbn5nF308j-bDcTCZvrwOB5NgQzmHgPYZoRyIoVoKqVlCqaBU92WWKUEUETJMtAYuKYsSHvW1SDVEoIlKo0QSwbro_tS7qavPrXE-XlunTVGo0lRbFzNgIgyPJ1r07h-6rLZ12X7XUoILYARYS8kTtbOFaeJNbdeqbmIC8VF8fBQf_4mPB09vg7_EfgBjh3lL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803103</pqid></control><display><type>article</type><title>A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liang, Yu‐Long ; Yu, Yue ; Li, Zi‐Wei ; Yang, Dong‐Yue ; Liu, Tong ; Yan, Jun‐Min ; Huang, Gang ; Zhang, Xinbo</creator><creatorcontrib>Liang, Yu‐Long ; Yu, Yue ; Li, Zi‐Wei ; Yang, Dong‐Yue ; Liu, Tong ; Yan, Jun‐Min ; Huang, Gang ; Zhang, Xinbo</creatorcontrib><description>Li–O2 batteries (LOBs) possess the highest theoretical gravimetric energy density among all types of secondary batteries, but they are still far from practical applications. The poor rate performance resulting from the slow mass transfer is one of the primary obstacles in LOBs. To solve this issue, a rotating cathode with periodic changes in the electrolyte layer thickness is designed, decoupling the maximum transfer rate of Li+ and O2. During rotation, the thinner electrolyte layer on the cathode facilitates the O2 transfer, and the thicker electrolyte layer enhances the Li+ transfer. As a result, the rotating cathode enables the LOBs to undergo 58 cycles at 2.5 mA cm−2 and discharge stably even at a high current density of 7.5 mA cm−2. Besides, it also makes the batteries exhibit a large discharge capacity of 6.8 mAh cm−2, and the capacity decay is much slower with increasing current density. Notably, this rotating electrode holds great promise for utilization in other electrochemical cells involving gas‐liquid‐solid triple‐phase interfaces, suggesting a viable approach to enhance the mass transfer in such systems. It is generally believed that the rate performance of Li‒O2 batteries (LOBs) is limited by the slow mass transfer. To this end, a new type of LOB with a rotating cathode has been designed to decouple the maximum transfer rate of Li+ and O2, and consequently, the rate performance of LOBs has been significantly improved.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403230</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Current density ; Decoupling ; Discharge ; Electrochemical cells ; Electrolytes ; Electrolytic cells ; high rate ; Li‒O2 batteries ; Mass transfer ; mass transfers ; rotating cathodes ; Rotating liquids ; Rotation ; Storage batteries ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2403230-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5806-159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Yu‐Long</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Li, Zi‐Wei</creatorcontrib><creatorcontrib>Yang, Dong‐Yue</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Yan, Jun‐Min</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Xinbo</creatorcontrib><title>A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries</title><title>Advanced materials (Weinheim)</title><description>Li–O2 batteries (LOBs) possess the highest theoretical gravimetric energy density among all types of secondary batteries, but they are still far from practical applications. The poor rate performance resulting from the slow mass transfer is one of the primary obstacles in LOBs. To solve this issue, a rotating cathode with periodic changes in the electrolyte layer thickness is designed, decoupling the maximum transfer rate of Li+ and O2. During rotation, the thinner electrolyte layer on the cathode facilitates the O2 transfer, and the thicker electrolyte layer enhances the Li+ transfer. As a result, the rotating cathode enables the LOBs to undergo 58 cycles at 2.5 mA cm−2 and discharge stably even at a high current density of 7.5 mA cm−2. Besides, it also makes the batteries exhibit a large discharge capacity of 6.8 mAh cm−2, and the capacity decay is much slower with increasing current density. Notably, this rotating electrode holds great promise for utilization in other electrochemical cells involving gas‐liquid‐solid triple‐phase interfaces, suggesting a viable approach to enhance the mass transfer in such systems. It is generally believed that the rate performance of Li‒O2 batteries (LOBs) is limited by the slow mass transfer. To this end, a new type of LOB with a rotating cathode has been designed to decouple the maximum transfer rate of Li+ and O2, and consequently, the rate performance of LOBs has been significantly improved.</description><subject>Cathodes</subject><subject>Current density</subject><subject>Decoupling</subject><subject>Discharge</subject><subject>Electrochemical cells</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>high rate</subject><subject>Li‒O2 batteries</subject><subject>Mass transfer</subject><subject>mass transfers</subject><subject>rotating cathodes</subject><subject>Rotating liquids</subject><subject>Rotation</subject><subject>Storage batteries</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkEFPwjAUxxujiYhePTfx4mX42m6lPSKimGAwBM9L13WsMDZcS8hufATjR-STOILx4Onln_fL_738ELol0CMA9EGla9WjQENglMEZ6pCIkiAEGZ2jDkgWBZKH4hJdObcEAMmBd9BqgGeVV96WCzxUPq9Sg3fW5_jd1LZKrVYFHuaqXBiHbYlHhdG-rorGGzxRjanxPLd6VRrncFbVeGwX-WH_NVPHvT3sv6cUPyrv2zLjrtFFpgpnbn5nF308j-bDcTCZvrwOB5NgQzmHgPYZoRyIoVoKqVlCqaBU92WWKUEUETJMtAYuKYsSHvW1SDVEoIlKo0QSwbro_tS7qavPrXE-XlunTVGo0lRbFzNgIgyPJ1r07h-6rLZ12X7XUoILYARYS8kTtbOFaeJNbdeqbmIC8VF8fBQf_4mPB09vg7_EfgBjh3lL</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liang, Yu‐Long</creator><creator>Yu, Yue</creator><creator>Li, Zi‐Wei</creator><creator>Yang, Dong‐Yue</creator><creator>Liu, Tong</creator><creator>Yan, Jun‐Min</creator><creator>Huang, Gang</creator><creator>Zhang, Xinbo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5806-159X</orcidid></search><sort><creationdate>20240801</creationdate><title>A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries</title><author>Liang, Yu‐Long ; Yu, Yue ; Li, Zi‐Wei ; Yang, Dong‐Yue ; Liu, Tong ; Yan, Jun‐Min ; Huang, Gang ; Zhang, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2660-27312601e2c989c3b22822c79ffa81a1894bcc069235b657c8dc050c1ad5b9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Current density</topic><topic>Decoupling</topic><topic>Discharge</topic><topic>Electrochemical cells</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>high rate</topic><topic>Li‒O2 batteries</topic><topic>Mass transfer</topic><topic>mass transfers</topic><topic>rotating cathodes</topic><topic>Rotating liquids</topic><topic>Rotation</topic><topic>Storage batteries</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yu‐Long</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Li, Zi‐Wei</creatorcontrib><creatorcontrib>Yang, Dong‐Yue</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Yan, Jun‐Min</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Xinbo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yu‐Long</au><au>Yu, Yue</au><au>Li, Zi‐Wei</au><au>Yang, Dong‐Yue</au><au>Liu, Tong</au><au>Yan, Jun‐Min</au><au>Huang, Gang</au><au>Zhang, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2403230</spage><epage>n/a</epage><pages>e2403230-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Li–O2 batteries (LOBs) possess the highest theoretical gravimetric energy density among all types of secondary batteries, but they are still far from practical applications. The poor rate performance resulting from the slow mass transfer is one of the primary obstacles in LOBs. To solve this issue, a rotating cathode with periodic changes in the electrolyte layer thickness is designed, decoupling the maximum transfer rate of Li+ and O2. During rotation, the thinner electrolyte layer on the cathode facilitates the O2 transfer, and the thicker electrolyte layer enhances the Li+ transfer. As a result, the rotating cathode enables the LOBs to undergo 58 cycles at 2.5 mA cm−2 and discharge stably even at a high current density of 7.5 mA cm−2. Besides, it also makes the batteries exhibit a large discharge capacity of 6.8 mAh cm−2, and the capacity decay is much slower with increasing current density. Notably, this rotating electrode holds great promise for utilization in other electrochemical cells involving gas‐liquid‐solid triple‐phase interfaces, suggesting a viable approach to enhance the mass transfer in such systems. It is generally believed that the rate performance of Li‒O2 batteries (LOBs) is limited by the slow mass transfer. To this end, a new type of LOB with a rotating cathode has been designed to decouple the maximum transfer rate of Li+ and O2, and consequently, the rate performance of LOBs has been significantly improved.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202403230</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5806-159X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2403230-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3038442601
source Wiley-Blackwell Read & Publish Collection
subjects Cathodes
Current density
Decoupling
Discharge
Electrochemical cells
Electrolytes
Electrolytic cells
high rate
Li‒O2 batteries
Mass transfer
mass transfers
rotating cathodes
Rotating liquids
Rotation
Storage batteries
Thickness
title A Rotating Cathode with Periodical Changes in Electrolyte Layer Thickness for High‐Rate Li‒O2 Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rotating%20Cathode%20with%20Periodical%20Changes%20in%20Electrolyte%20Layer%20Thickness%20for%20High%E2%80%90Rate%20Li%E2%80%92O2%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Yu%E2%80%90Long&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2403230&rft.epage=n/a&rft.pages=e2403230-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403230&rft_dat=%3Cproquest_wiley%3E3086803103%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2660-27312601e2c989c3b22822c79ffa81a1894bcc069235b657c8dc050c1ad5b9183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086803103&rft_id=info:pmid/&rfr_iscdi=true