Loading…

Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes

Aim To develop and employ machine learning (ML) algorithms to analyse electrocardiograms (ECGs) for the diagnosis of cardiac autonomic neuropathy (CAN). Materials and Methods We used motif and discord extraction techniques, alongside long short‐term memory networks, to analyse 12‐lead, 10‐s ECG trac...

Full description

Saved in:
Bibliographic Details
Published in:Diabetes, obesity & metabolism obesity & metabolism, 2024-07, Vol.26 (7), p.2624-2633
Main Authors: Irlik, Krzysztof, Aldosari, Hanadi, Hendel, Mirela, Kwiendacz, Hanna, Piaśnik, Julia, Kulpa, Justyna, Ignacy, Paweł, Boczek, Sylwia, Herba, Mikołaj, Kegler, Kamil, Coenen, Frans, Gumprecht, Janusz, Zheng, Yalin, Lip, Gregory Y. H., Alam, Uazman, Nabrdalik, Katarzyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3488-42368d6bab84c8b9a0a93f1d81ac6b57d2d365e3b16e0dca629a20aac0709cd93
container_end_page 2633
container_issue 7
container_start_page 2624
container_title Diabetes, obesity & metabolism
container_volume 26
creator Irlik, Krzysztof
Aldosari, Hanadi
Hendel, Mirela
Kwiendacz, Hanna
Piaśnik, Julia
Kulpa, Justyna
Ignacy, Paweł
Boczek, Sylwia
Herba, Mikołaj
Kegler, Kamil
Coenen, Frans
Gumprecht, Janusz
Zheng, Yalin
Lip, Gregory Y. H.
Alam, Uazman
Nabrdalik, Katarzyna
description Aim To develop and employ machine learning (ML) algorithms to analyse electrocardiograms (ECGs) for the diagnosis of cardiac autonomic neuropathy (CAN). Materials and Methods We used motif and discord extraction techniques, alongside long short‐term memory networks, to analyse 12‐lead, 10‐s ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the support vector machine classification model was evaluated using 10‐fold cross validation with the following metrics: accuracy, precision, recall, F1 score, and area under the receiver‐operating characteristic curve (AUC). Results Among 205 patients (mean age 54 ± 17 years, 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95% confidence interval [CI] 0.91–0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded the best results, with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95% CI 0.54–0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large‐scale screening of CAN, particularly to identify definite/severe CAN where cardiovascular risk factor modification may be initiated.
doi_str_mv 10.1111/dom.15578
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038444662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038444662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3488-42368d6bab84c8b9a0a93f1d81ac6b57d2d365e3b16e0dca629a20aac0709cd93</originalsourceid><addsrcrecordid>eNp10c1O3DAUBWCrKio_7aIvgCx1UxYBO04cZ4logUqg2bTr6Ma-mTFK7MFOhLJjwQPwjH0SzMy0CyS88Vl8OtLVIeQrZ6c8vTPjh1NelpX6QA54IUXGRS4_bnKeqZrl--QwxjvGWCFU9YnsCyWZKFV9QJ7Ow2g7qy301LoR-94u0Wn8-_iMbgUpGYo96jF4DcFYvwwwUHDQz9FG2vlArUGXOmbrlnRjQFOYRu_8YDV1OAW_hnE1p36agk060gc7rmiiLY4YP5O9DvqIX3b_Eflz-fP3xXV2s7j6dXF-k2lRKJUVuZDKyBZaVWjV1sCgFh03ioOWbVmZ3AhZomi5RGY0yLyGnAFoVrFam1ocke_b3nXw9xPGsRls1OlmcOin2AgmVFEUUuaJfntD7_wU0tmvSoq6KplSSZ1slQ4-xoBdsw52gDA3nDWv0zRpmmYzTbLHu8apHdD8l_-2SOBsCx5sj_P7Tc2Pxe228gXGPZx_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063975088</pqid></control><display><type>article</type><title>Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Irlik, Krzysztof ; Aldosari, Hanadi ; Hendel, Mirela ; Kwiendacz, Hanna ; Piaśnik, Julia ; Kulpa, Justyna ; Ignacy, Paweł ; Boczek, Sylwia ; Herba, Mikołaj ; Kegler, Kamil ; Coenen, Frans ; Gumprecht, Janusz ; Zheng, Yalin ; Lip, Gregory Y. H. ; Alam, Uazman ; Nabrdalik, Katarzyna</creator><creatorcontrib>Irlik, Krzysztof ; Aldosari, Hanadi ; Hendel, Mirela ; Kwiendacz, Hanna ; Piaśnik, Julia ; Kulpa, Justyna ; Ignacy, Paweł ; Boczek, Sylwia ; Herba, Mikołaj ; Kegler, Kamil ; Coenen, Frans ; Gumprecht, Janusz ; Zheng, Yalin ; Lip, Gregory Y. H. ; Alam, Uazman ; Nabrdalik, Katarzyna</creatorcontrib><description>Aim To develop and employ machine learning (ML) algorithms to analyse electrocardiograms (ECGs) for the diagnosis of cardiac autonomic neuropathy (CAN). Materials and Methods We used motif and discord extraction techniques, alongside long short‐term memory networks, to analyse 12‐lead, 10‐s ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the support vector machine classification model was evaluated using 10‐fold cross validation with the following metrics: accuracy, precision, recall, F1 score, and area under the receiver‐operating characteristic curve (AUC). Results Among 205 patients (mean age 54 ± 17 years, 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95% confidence interval [CI] 0.91–0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded the best results, with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95% CI 0.54–0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large‐scale screening of CAN, particularly to identify definite/severe CAN where cardiovascular risk factor modification may be initiated.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.15578</identifier><identifier>PMID: 38603589</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Artificial intelligence ; Autonomic nervous system ; autonomic neuropathy ; Cardiovascular diseases ; Classification ; deep learning ; Diabetes ; diabetes complications ; Diabetes mellitus ; Diabetic neuropathy ; discord ; EKG ; electrocardiogram ; Heart ; machine learning ; motif ; Neuropathy ; Risk factors</subject><ispartof>Diabetes, obesity &amp; metabolism, 2024-07, Vol.26 (7), p.2624-2633</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Diabetes, Obesity and Metabolism published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3488-42368d6bab84c8b9a0a93f1d81ac6b57d2d365e3b16e0dca629a20aac0709cd93</cites><orcidid>0000-0002-3190-1122 ; 0000-0001-9699-1686 ; 0000-0002-0777-8048 ; 0000-0002-5423-4553 ; 0000-0002-7566-1626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38603589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irlik, Krzysztof</creatorcontrib><creatorcontrib>Aldosari, Hanadi</creatorcontrib><creatorcontrib>Hendel, Mirela</creatorcontrib><creatorcontrib>Kwiendacz, Hanna</creatorcontrib><creatorcontrib>Piaśnik, Julia</creatorcontrib><creatorcontrib>Kulpa, Justyna</creatorcontrib><creatorcontrib>Ignacy, Paweł</creatorcontrib><creatorcontrib>Boczek, Sylwia</creatorcontrib><creatorcontrib>Herba, Mikołaj</creatorcontrib><creatorcontrib>Kegler, Kamil</creatorcontrib><creatorcontrib>Coenen, Frans</creatorcontrib><creatorcontrib>Gumprecht, Janusz</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Lip, Gregory Y. H.</creatorcontrib><creatorcontrib>Alam, Uazman</creatorcontrib><creatorcontrib>Nabrdalik, Katarzyna</creatorcontrib><title>Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Aim To develop and employ machine learning (ML) algorithms to analyse electrocardiograms (ECGs) for the diagnosis of cardiac autonomic neuropathy (CAN). Materials and Methods We used motif and discord extraction techniques, alongside long short‐term memory networks, to analyse 12‐lead, 10‐s ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the support vector machine classification model was evaluated using 10‐fold cross validation with the following metrics: accuracy, precision, recall, F1 score, and area under the receiver‐operating characteristic curve (AUC). Results Among 205 patients (mean age 54 ± 17 years, 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95% confidence interval [CI] 0.91–0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded the best results, with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95% CI 0.54–0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large‐scale screening of CAN, particularly to identify definite/severe CAN where cardiovascular risk factor modification may be initiated.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Autonomic nervous system</subject><subject>autonomic neuropathy</subject><subject>Cardiovascular diseases</subject><subject>Classification</subject><subject>deep learning</subject><subject>Diabetes</subject><subject>diabetes complications</subject><subject>Diabetes mellitus</subject><subject>Diabetic neuropathy</subject><subject>discord</subject><subject>EKG</subject><subject>electrocardiogram</subject><subject>Heart</subject><subject>machine learning</subject><subject>motif</subject><subject>Neuropathy</subject><subject>Risk factors</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10c1O3DAUBWCrKio_7aIvgCx1UxYBO04cZ4logUqg2bTr6Ma-mTFK7MFOhLJjwQPwjH0SzMy0CyS88Vl8OtLVIeQrZ6c8vTPjh1NelpX6QA54IUXGRS4_bnKeqZrl--QwxjvGWCFU9YnsCyWZKFV9QJ7Ow2g7qy301LoR-94u0Wn8-_iMbgUpGYo96jF4DcFYvwwwUHDQz9FG2vlArUGXOmbrlnRjQFOYRu_8YDV1OAW_hnE1p36agk060gc7rmiiLY4YP5O9DvqIX3b_Eflz-fP3xXV2s7j6dXF-k2lRKJUVuZDKyBZaVWjV1sCgFh03ioOWbVmZ3AhZomi5RGY0yLyGnAFoVrFam1ocke_b3nXw9xPGsRls1OlmcOin2AgmVFEUUuaJfntD7_wU0tmvSoq6KplSSZ1slQ4-xoBdsw52gDA3nDWv0zRpmmYzTbLHu8apHdD8l_-2SOBsCx5sj_P7Tc2Pxe228gXGPZx_</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Irlik, Krzysztof</creator><creator>Aldosari, Hanadi</creator><creator>Hendel, Mirela</creator><creator>Kwiendacz, Hanna</creator><creator>Piaśnik, Julia</creator><creator>Kulpa, Justyna</creator><creator>Ignacy, Paweł</creator><creator>Boczek, Sylwia</creator><creator>Herba, Mikołaj</creator><creator>Kegler, Kamil</creator><creator>Coenen, Frans</creator><creator>Gumprecht, Janusz</creator><creator>Zheng, Yalin</creator><creator>Lip, Gregory Y. H.</creator><creator>Alam, Uazman</creator><creator>Nabrdalik, Katarzyna</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3190-1122</orcidid><orcidid>https://orcid.org/0000-0001-9699-1686</orcidid><orcidid>https://orcid.org/0000-0002-0777-8048</orcidid><orcidid>https://orcid.org/0000-0002-5423-4553</orcidid><orcidid>https://orcid.org/0000-0002-7566-1626</orcidid></search><sort><creationdate>202407</creationdate><title>Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes</title><author>Irlik, Krzysztof ; Aldosari, Hanadi ; Hendel, Mirela ; Kwiendacz, Hanna ; Piaśnik, Julia ; Kulpa, Justyna ; Ignacy, Paweł ; Boczek, Sylwia ; Herba, Mikołaj ; Kegler, Kamil ; Coenen, Frans ; Gumprecht, Janusz ; Zheng, Yalin ; Lip, Gregory Y. H. ; Alam, Uazman ; Nabrdalik, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3488-42368d6bab84c8b9a0a93f1d81ac6b57d2d365e3b16e0dca629a20aac0709cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Autonomic nervous system</topic><topic>autonomic neuropathy</topic><topic>Cardiovascular diseases</topic><topic>Classification</topic><topic>deep learning</topic><topic>Diabetes</topic><topic>diabetes complications</topic><topic>Diabetes mellitus</topic><topic>Diabetic neuropathy</topic><topic>discord</topic><topic>EKG</topic><topic>electrocardiogram</topic><topic>Heart</topic><topic>machine learning</topic><topic>motif</topic><topic>Neuropathy</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irlik, Krzysztof</creatorcontrib><creatorcontrib>Aldosari, Hanadi</creatorcontrib><creatorcontrib>Hendel, Mirela</creatorcontrib><creatorcontrib>Kwiendacz, Hanna</creatorcontrib><creatorcontrib>Piaśnik, Julia</creatorcontrib><creatorcontrib>Kulpa, Justyna</creatorcontrib><creatorcontrib>Ignacy, Paweł</creatorcontrib><creatorcontrib>Boczek, Sylwia</creatorcontrib><creatorcontrib>Herba, Mikołaj</creatorcontrib><creatorcontrib>Kegler, Kamil</creatorcontrib><creatorcontrib>Coenen, Frans</creatorcontrib><creatorcontrib>Gumprecht, Janusz</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Lip, Gregory Y. H.</creatorcontrib><creatorcontrib>Alam, Uazman</creatorcontrib><creatorcontrib>Nabrdalik, Katarzyna</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irlik, Krzysztof</au><au>Aldosari, Hanadi</au><au>Hendel, Mirela</au><au>Kwiendacz, Hanna</au><au>Piaśnik, Julia</au><au>Kulpa, Justyna</au><au>Ignacy, Paweł</au><au>Boczek, Sylwia</au><au>Herba, Mikołaj</au><au>Kegler, Kamil</au><au>Coenen, Frans</au><au>Gumprecht, Janusz</au><au>Zheng, Yalin</au><au>Lip, Gregory Y. H.</au><au>Alam, Uazman</au><au>Nabrdalik, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2024-07</date><risdate>2024</risdate><volume>26</volume><issue>7</issue><spage>2624</spage><epage>2633</epage><pages>2624-2633</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>Aim To develop and employ machine learning (ML) algorithms to analyse electrocardiograms (ECGs) for the diagnosis of cardiac autonomic neuropathy (CAN). Materials and Methods We used motif and discord extraction techniques, alongside long short‐term memory networks, to analyse 12‐lead, 10‐s ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the support vector machine classification model was evaluated using 10‐fold cross validation with the following metrics: accuracy, precision, recall, F1 score, and area under the receiver‐operating characteristic curve (AUC). Results Among 205 patients (mean age 54 ± 17 years, 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95% confidence interval [CI] 0.91–0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded the best results, with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95% CI 0.54–0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large‐scale screening of CAN, particularly to identify definite/severe CAN where cardiovascular risk factor modification may be initiated.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>38603589</pmid><doi>10.1111/dom.15578</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3190-1122</orcidid><orcidid>https://orcid.org/0000-0001-9699-1686</orcidid><orcidid>https://orcid.org/0000-0002-0777-8048</orcidid><orcidid>https://orcid.org/0000-0002-5423-4553</orcidid><orcidid>https://orcid.org/0000-0002-7566-1626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2024-07, Vol.26 (7), p.2624-2633
issn 1462-8902
1463-1326
language eng
recordid cdi_proquest_miscellaneous_3038444662
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Accuracy
Artificial intelligence
Autonomic nervous system
autonomic neuropathy
Cardiovascular diseases
Classification
deep learning
Diabetes
diabetes complications
Diabetes mellitus
Diabetic neuropathy
discord
EKG
electrocardiogram
Heart
machine learning
motif
Neuropathy
Risk factors
title Artificial intelligence‐enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%E2%80%90enhanced%20electrocardiogram%20analysis%20for%20identifying%20cardiac%20autonomic%20neuropathy%20in%20patients%20with%20diabetes&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Irlik,%20Krzysztof&rft.date=2024-07&rft.volume=26&rft.issue=7&rft.spage=2624&rft.epage=2633&rft.pages=2624-2633&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.15578&rft_dat=%3Cproquest_cross%3E3038444662%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3488-42368d6bab84c8b9a0a93f1d81ac6b57d2d365e3b16e0dca629a20aac0709cd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3063975088&rft_id=info:pmid/38603589&rfr_iscdi=true