Loading…
A General Convolution Identity
A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci number...
Saved in:
Published in: | Mathematics magazine 2024-04, Vol.97 (2), p.98 |
---|---|
Main Authors: | , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 98 |
container_title | Mathematics magazine |
container_volume | 97 |
creator | Dresden, Greg Wang, Yichen |
description | A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area. |
doi_str_mv | 10.1080/0025570X |
format | magazinearticle |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038814176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038814176</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_30388141763</originalsourceid><addsrcrecordid>eNpjYBAwNNAzNLAw0DcwMDI1NTeIYGLgNLQ0NtA1sLQwYGHgBAnrgsQ5GLiKi7MMDAyNzIzMOBnkHBXcU_NSixJzFJzz88ryc0pLMvPzFDxTUvNKMksqeRhY0xJzilN5oTQ3g4aba4izh25BUX5haWpxSXxuZnFyak5OYl5qfmlxvLGBsYWFoYmhuZkxCUoBrcY1AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>3038814176</pqid></control><display><type>magazinearticle</type><title>A General Convolution Identity</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dresden, Greg ; Wang, Yichen</creator><creatorcontrib>Dresden, Greg ; Wang, Yichen</creatorcontrib><description>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</description><identifier>ISSN: 0025-570X</identifier><identifier>EISSN: 1930-0980</identifier><identifier>DOI: 10.1080/0025570X</identifier><language>eng</language><publisher>Washington: Taylor & Francis Ltd</publisher><subject>Convolution ; Fibonacci numbers ; Identities ; Identity ; Mathematics ; Numbers ; Sequences ; Theorems</subject><ispartof>Mathematics magazine, 2024-04, Vol.97 (2), p.98</ispartof><rights>Copyright Taylor & Francis Ltd. Apr 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Dresden, Greg</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><title>A General Convolution Identity</title><title>Mathematics magazine</title><description>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</description><subject>Convolution</subject><subject>Fibonacci numbers</subject><subject>Identities</subject><subject>Identity</subject><subject>Mathematics</subject><subject>Numbers</subject><subject>Sequences</subject><subject>Theorems</subject><issn>0025-570X</issn><issn>1930-0980</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><recordid>eNpjYBAwNNAzNLAw0DcwMDI1NTeIYGLgNLQ0NtA1sLQwYGHgBAnrgsQ5GLiKi7MMDAyNzIzMOBnkHBXcU_NSixJzFJzz88ryc0pLMvPzFDxTUvNKMksqeRhY0xJzilN5oTQ3g4aba4izh25BUX5haWpxSXxuZnFyak5OYl5qfmlxvLGBsYWFoYmhuZkxCUoBrcY1AA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Dresden, Greg</creator><creator>Wang, Yichen</creator><general>Taylor & Francis Ltd</general><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>A General Convolution Identity</title><author>Dresden, Greg ; Wang, Yichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_30388141763</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolution</topic><topic>Fibonacci numbers</topic><topic>Identities</topic><topic>Identity</topic><topic>Mathematics</topic><topic>Numbers</topic><topic>Sequences</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dresden, Greg</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dresden, Greg</au><au>Wang, Yichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Convolution Identity</atitle><jtitle>Mathematics magazine</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>97</volume><issue>2</issue><spage>98</spage><pages>98-</pages><issn>0025-570X</issn><eissn>1930-0980</eissn><abstract>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</abstract><cop>Washington</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/0025570X</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-570X |
ispartof | Mathematics magazine, 2024-04, Vol.97 (2), p.98 |
issn | 0025-570X 1930-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038814176 |
source | Taylor and Francis Science and Technology Collection |
subjects | Convolution Fibonacci numbers Identities Identity Mathematics Numbers Sequences Theorems |
title | A General Convolution Identity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Convolution%20Identity&rft.jtitle=Mathematics%20magazine&rft.au=Dresden,%20Greg&rft.date=2024-04-01&rft.volume=97&rft.issue=2&rft.spage=98&rft.pages=98-&rft.issn=0025-570X&rft.eissn=1930-0980&rft_id=info:doi/10.1080/0025570X&rft_dat=%3Cproquest%3E3038814176%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_30388141763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3038814176&rft_id=info:pmid/&rfr_iscdi=true |