Loading…

A General Convolution Identity

A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci number...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics magazine 2024-04, Vol.97 (2), p.98
Main Authors: Dresden, Greg, Wang, Yichen
Format: Magazinearticle
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 98
container_title Mathematics magazine
container_volume 97
creator Dresden, Greg
Wang, Yichen
description A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.
doi_str_mv 10.1080/0025570X
format magazinearticle
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038814176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038814176</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_30388141763</originalsourceid><addsrcrecordid>eNpjYBAwNNAzNLAw0DcwMDI1NTeIYGLgNLQ0NtA1sLQwYGHgBAnrgsQ5GLiKi7MMDAyNzIzMOBnkHBXcU_NSixJzFJzz88ryc0pLMvPzFDxTUvNKMksqeRhY0xJzilN5oTQ3g4aba4izh25BUX5haWpxSXxuZnFyak5OYl5qfmlxvLGBsYWFoYmhuZkxCUoBrcY1AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>3038814176</pqid></control><display><type>magazinearticle</type><title>A General Convolution Identity</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dresden, Greg ; Wang, Yichen</creator><creatorcontrib>Dresden, Greg ; Wang, Yichen</creatorcontrib><description>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</description><identifier>ISSN: 0025-570X</identifier><identifier>EISSN: 1930-0980</identifier><identifier>DOI: 10.1080/0025570X</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Ltd</publisher><subject>Convolution ; Fibonacci numbers ; Identities ; Identity ; Mathematics ; Numbers ; Sequences ; Theorems</subject><ispartof>Mathematics magazine, 2024-04, Vol.97 (2), p.98</ispartof><rights>Copyright Taylor &amp; Francis Ltd. Apr 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Dresden, Greg</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><title>A General Convolution Identity</title><title>Mathematics magazine</title><description>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</description><subject>Convolution</subject><subject>Fibonacci numbers</subject><subject>Identities</subject><subject>Identity</subject><subject>Mathematics</subject><subject>Numbers</subject><subject>Sequences</subject><subject>Theorems</subject><issn>0025-570X</issn><issn>1930-0980</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><recordid>eNpjYBAwNNAzNLAw0DcwMDI1NTeIYGLgNLQ0NtA1sLQwYGHgBAnrgsQ5GLiKi7MMDAyNzIzMOBnkHBXcU_NSixJzFJzz88ryc0pLMvPzFDxTUvNKMksqeRhY0xJzilN5oTQ3g4aba4izh25BUX5haWpxSXxuZnFyak5OYl5qfmlxvLGBsYWFoYmhuZkxCUoBrcY1AA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Dresden, Greg</creator><creator>Wang, Yichen</creator><general>Taylor &amp; Francis Ltd</general><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>A General Convolution Identity</title><author>Dresden, Greg ; Wang, Yichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_30388141763</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolution</topic><topic>Fibonacci numbers</topic><topic>Identities</topic><topic>Identity</topic><topic>Mathematics</topic><topic>Numbers</topic><topic>Sequences</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dresden, Greg</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dresden, Greg</au><au>Wang, Yichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Convolution Identity</atitle><jtitle>Mathematics magazine</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>97</volume><issue>2</issue><spage>98</spage><pages>98-</pages><issn>0025-570X</issn><eissn>1930-0980</eissn><abstract>A general convolution identity is derived for Fibonaccitype and Lucastype sequences. The convolution of the Fibonacci and Lucas numbers is shown to be equal to a simple multiple of a Fibonacci number. This result is then generalized to other sequences such as the Pell, Padovan, and Tribonacci numbers. The concept of generating functions is introduced and used to prove the convolution identity. Newton's identities are also discussed in the context of these sequences. The paper concludes by mentioning other convolution formulas that have been discovered and the potential for further research in this area.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/0025570X</doi></addata></record>
fulltext fulltext
identifier ISSN: 0025-570X
ispartof Mathematics magazine, 2024-04, Vol.97 (2), p.98
issn 0025-570X
1930-0980
language eng
recordid cdi_proquest_miscellaneous_3038814176
source Taylor and Francis Science and Technology Collection
subjects Convolution
Fibonacci numbers
Identities
Identity
Mathematics
Numbers
Sequences
Theorems
title A General Convolution Identity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Convolution%20Identity&rft.jtitle=Mathematics%20magazine&rft.au=Dresden,%20Greg&rft.date=2024-04-01&rft.volume=97&rft.issue=2&rft.spage=98&rft.pages=98-&rft.issn=0025-570X&rft.eissn=1930-0980&rft_id=info:doi/10.1080/0025570X&rft_dat=%3Cproquest%3E3038814176%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_30388141763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3038814176&rft_id=info:pmid/&rfr_iscdi=true