Loading…

Developing a model-ready highly resolved HONO emission inventory in Guangdong using domestic measured emission factors

Nitrous acid (HONO) plays an important role in the budget of hydroxyl radical (OH) in the atmosphere. However, current chemical transport models (CTMs) typically underestimate ambient concentrations of HONO due to a dearth of high resolution primary HONO emission inventories. To address this issue,...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2023-11, Vol.899, p.165737-165737, Article 165737
Main Authors: Yin, Xiaohong, Tang, Feng, Huang, Zhijiong, Liao, Songdi, Sha, Qinge, Cheng, Peng, Lu, Menghua, Li, Zhen, Yu, Fei, Xu, Yuanqian, Shao, Min, Zheng, Junyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrous acid (HONO) plays an important role in the budget of hydroxyl radical (OH) in the atmosphere. However, current chemical transport models (CTMs) typically underestimate ambient concentrations of HONO due to a dearth of high resolution primary HONO emission inventories. To address this issue, we have established a highly resolved bottom-up HONO emission inventory for CTMs in Guangdong province, utilizing the best available domestic measured emission factors and newly obtained activity data. Our results indicate that emissions from various sources in 2020, including soil, on-road traffic, non-road traffic, biomass burning, and stationary combustion, were estimated at 21.5, 10.0, 8.2, 2.5, and 0.7 kt, respectively. Notably, the HONO emissions structure differed between the Pearl River Delta (PRD) and the non-PRD regions. Specifically, traffic sources were the dominant contributors (62 %) to HONO emissions in the PRD, whereas soil sources accounted for the majority (65 %) of those in the non-PRD. Among on-road traffic sources, diesel vehicles played a significant role, contributing 99.7 %. Comparisons with previous methods suggest that HONO emissions from diesel vehicles are underestimated by approximately 2.5 times. Higher HONO emissions, dominated by soil emissions, were observed in summer months, particularly in August. Furthermore, diesel vehicle emissions were pronounced at night, likely contributing to the nighttime accumulation of HONO and the morning peak of OH. The emission inventories developed in this study can be directly applied to widely used CTMs, such as CMAQ, CAMx, WRF-Chem, and NAQPMS, to support the simulation of OH formation and secondary air pollution. [Display omitted] •Development of a highly resolved HONO emission inventory for CTMs•Dominant contributions from traffic and soil sources to HONO emissions.•Previous methods underestimate HONO emissions from diesel vehicles by ∼2.5 times.•Summer months show higher HONO emissions, dominated by soil.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.165737