Loading…

Low-Volume Speed Endurance Training with Reduced Volume Improves Short-Term Exercise Performance in Highly Trained Cyclists

We investigated the effects of low and high volume speed endurance training (SET), with a reduced training volume, on sprint ability, short- and long-term exercise capacity, muscle mitochondrial properties, ion transport proteins and maximal enzyme activity in highly trained athletes. Highly-trained...

Full description

Saved in:
Bibliographic Details
Published in:Medicine and science in sports and exercise 2024-09, Vol.56 (9), p.1709-1721
Main Authors: Jeppesen, Jan S, Wickham, Kate A, Zeuthen, Martin, Thomassen, Martin, Jessen, Søren, Hellsten, Ylva, Hostrup, Morten, Bangsbo, Jens
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the effects of low and high volume speed endurance training (SET), with a reduced training volume, on sprint ability, short- and long-term exercise capacity, muscle mitochondrial properties, ion transport proteins and maximal enzyme activity in highly trained athletes. Highly-trained male cyclists (V̇O2max: 68.3 ± 5.0 mL × min-1 × kg-1, n = 24) completed six weeks of either low (SET-L; 6x30-s intervals, n = 8) or high (SET-H; 12 × 30-s intervals, n = 8) volume SET twice per week with a 30%-reduction in training volume. A control group (CON, n = 8) maintained their training. Exercise performance was evaluated by i) 6-s sprinting, ii) a 4-min time trial, iii) a 60-min preload at 60% V̇O2max followed by a 20-min time trial. A biopsy of m. vastus lateralis was collected before and after the training intervention. In SET-L, 4-min time trial performance was improved (P < 0.05) by 3.8%, with no change in SET-H and CON. Sprint ability, prolonged endurance exercise capacity, V̇O2max, muscle mitochondrial respiratory capacity, maximal citrate synthase activity, fiber-type specific mitochondrial proteins (complex I - V) and PFK content did not change in any of the groups. In SET-H, maximal activity of muscle PFK and abundance of Na+-K+ pump-subunit α1, α2, β1, and phospholemman (FXYD1) were 20%, 50%, 19%, 24%, and 42 % higher (P < 0.05), respectively after compared to before the intervention, with no changes in SET-L or CON. Low SET volume combined with a reduced aerobic low and moderate intensity training volume does improve short duration intense exercise performance and maintain sprinting ability, V̇O2max, endurance exercise performance and muscle oxidative capacity, whereas, high volume of SET appears necessary to upregulate muscle ion transporter content and maximal PFK activity in highly trained cyclists.
ISSN:0195-9131
1530-0315
1530-0315
DOI:10.1249/MSS.0000000000003453