Loading…

Polydopamine contained hydrogel nanocomposites with combined antimicrobial and antioxidant properties for accelerated wound healing

Overproduction of reactive oxygen species (ROS) in infected wounds induces a tremendous inflammatory reaction to delay wound healing. To address this problem, we designed a multifunctional polyacrylamide/PVA-based hydrogel containing synthesized poly(1-glycidyl-3-butylimidazolium salicylate) (polyGB...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-05, Vol.268 (Pt 1), p.131700-131700, Article 131700
Main Authors: Abdollahi, Mahin, Andalib, Sina, Ghorbani, Roghayeh, Afshar, Davoud, Gholinejad, Mohammad, Abdollahi, Hamed, Akbari, Ali, Nikfarjam, Nasser
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overproduction of reactive oxygen species (ROS) in infected wounds induces a tremendous inflammatory reaction to delay wound healing. To address this problem, we designed a multifunctional polyacrylamide/PVA-based hydrogel containing synthesized poly(1-glycidyl-3-butylimidazolium salicylate) (polyGBImSal) and fabricated polydopamine-coated polyphenolic nanosheet (PDA@PNS) for wound dressing. The PDA@PNS particles were designed to induce I) antioxidant and anti-inflammatory features through ROS-scavenging and II) cell adhesive properties by the existing polydopamine into the hydrogels. The poly(ionic liquid)-based polyGBImSal was designed to allocate effective hydrogel antimicrobial activity. The fabricated hydrogel nanocomposites showed excellent properties in the swelling ratio, cell adhesiveness, protein adsorption, and anti-inflammatory, proving their general performance for application in wound healing. Furthermore, these hydrogels showed high antimicrobial activity (over 95 %) against three common wound-infecting pathogenic microbes: Escherichia coli, Staphylococcus aureus, and Candida albicans. The healing process of full-thickness dermal wounds in rats was accelerated by applying hydrogel nanocomposites with 0.5 wt% of PDA@PNS and 28 wt% of polyGBImSal. The wound closure contraction attained full closure, reaching 100 %, after 14 days, contrasted with the control group employing commercial wound dressing (Tegaderm), which achieved a closure rate of 68 % within the equivalent timeframe. These results make these hydrogel nanocomposites promising candidates for multifunctional wound dressing applications.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.131700