Loading…

Premise setting for sustainable developing adsorption in environmental remediation using graphitic carbon nitride@agar-derived porous carbon composite

In the adsorption process for wastewater treatment, the adsorbent plays an important role. A composite adsorptive material composed of graphitic carbon nitride and agar-derived porous carbon (CNPC) was fabricated from simple precursors (melamine, thiourea, and agar) and through a facile procedure wi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-05, Vol.268 (Pt 2), p.131760, Article 131760
Main Authors: Hieu, Nguyen Huu, An, Hoang, Vu, Nguyen Hung, Tai, Le Phuoc, Dat, Nguyen Minh, Duc, Ngo Khanh, Hai, Nguyen Duy, Nam, Nguyen Thanh Hoai, Huong, Le Minh, Cong, Che Quang, Tai, Le Tan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the adsorption process for wastewater treatment, the adsorbent plays an important role. A composite adsorptive material composed of graphitic carbon nitride and agar-derived porous carbon (CNPC) was fabricated from simple precursors (melamine, thiourea, and agar) and through a facile procedure with different melamine and thiourea ratios. Characterization of CNPC proved a successful formation of a porous structure consisting of mesopores and macropores, wherein CNPC holds distinctive electrochemical (lowered resistance and higher specific capacity) and photochemical properties (lowered bandgap to 2.33 eV) thanks to the combination of graphitic carbon nitride (CN) and agar-derived porous carbon (PC). Inheriting the immanent nature, CNPC was subjected to the adsorption of methylene blue (MB) dye in an aqueous solution. The highest adsorption capacity was 133 mg/g for CNPC-4 which was prepared using a melamine to thiourea ratio of 4:4 – equivalent to the removal rate of 53.2 % and following the pseudo-I-order reaction rate. The effect of pH points out that pH 7 and 9 were susceptible to maximum removal and pretreatment is not required while the optimal ratio of 7.5 mg of MB and 30 mg of material was also determined to yield the highest performance. Furthermore, the reusability of the material for three consecutive cycles was evaluated based on two methods pyrolysis at 200 °C and photocatalytic degradation by irradiation under visible light. In general, the photocatalytic regeneration pathway is more ample and efficient than pyrolysis in terms of energy efficiency (saving energy over 10 times) and adsorption capacity stability. As a whole, the construction of accessible regenerative and stable adsorbent could be a venturing step into the sustainable development spearhead for industries.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.131760