Loading…
IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis
In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐...
Saved in:
Published in: | Journal of cellular physiology 2024-06, Vol.239 (6), p.e31286-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e31286 |
container_title | Journal of cellular physiology |
container_volume | 239 |
creator | Jiang, Bulin Zheng, Jiqi Yao, Hantao Wang, Yake Song, Fangfang Huang, Cui |
description | In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.
IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs. |
doi_str_mv | 10.1002/jcp.31286 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047943861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047943861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiq4fB_-ABLzooZpJ2rQ56uIniqIreCtpd-pm2U1rp0X23xvd1YPgaQ7z8DLzMrYP4gSEkKfTsjlRIDO9xgYgTBrFOpHrbBB2EJkkhi22TTQVQhij1CbbUpnWOs5gwEY3T68Jp75pWiRC4jV1WL-hdyUfu6rCFn3nbOdqz-uKT87vn4fEiwV3fuIK1zn_xpu27tB5TgvfTZAc7bKNys4I91Zzh71cXoyG19Hdw9XN8OwuKhUoHWlZKhlXqakgM1oh6KooMyN1IVNrdZaksZYqAYilGBcyERas1EIpNAjKarXDjpa54YL3HqnL545KnM2sx7qnXIk4NXF4FgI9_EOndd_6cF1QOgWRGCODOl6qsq2JWqzypnVz2y5yEPlX1XmoOv-uOtiDVWJfzHH8K3-6DeB0CT7cDBf_J-W3w8dl5CcsK4YV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067105992</pqid></control><display><type>article</type><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</creator><creatorcontrib>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</creatorcontrib><description>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.
IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</description><identifier>ISSN: 0021-9541</identifier><identifier>ISSN: 1097-4652</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.31286</identifier><identifier>PMID: 38666481</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adipogenesis ; Adipose tissue ; Aging (artificial) ; Animals ; BMSCs ; Bone marrow ; Cell Differentiation - genetics ; Cells, Cultured ; Differentiation (biology) ; Female ; Histology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Immunofluorescence ; Irx5 gene ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Oophorectomy ; Osteogenesis ; Osteogenesis - genetics ; Osteoporosis ; Osteoporosis - genetics ; Osteoporosis - metabolism ; Osteoporosis - pathology ; Ovariectomy ; OxPhos ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Rapamycin ; Ribonucleic acid ; ribosomes ; RNA ; Signal Transduction ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Translation ; Transmission electron microscopy</subject><ispartof>Journal of cellular physiology, 2024-06, Vol.239 (6), p.e31286-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</cites><orcidid>0000-0001-9582-7198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38666481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Bulin</creatorcontrib><creatorcontrib>Zheng, Jiqi</creatorcontrib><creatorcontrib>Yao, Hantao</creatorcontrib><creatorcontrib>Wang, Yake</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.
IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</description><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Aging (artificial)</subject><subject>Animals</subject><subject>BMSCs</subject><subject>Bone marrow</subject><subject>Cell Differentiation - genetics</subject><subject>Cells, Cultured</subject><subject>Differentiation (biology)</subject><subject>Female</subject><subject>Histology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Irx5 gene</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oophorectomy</subject><subject>Osteogenesis</subject><subject>Osteogenesis - genetics</subject><subject>Osteoporosis</subject><subject>Osteoporosis - genetics</subject><subject>Osteoporosis - metabolism</subject><subject>Osteoporosis - pathology</subject><subject>Ovariectomy</subject><subject>OxPhos</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Ribonucleic acid</subject><subject>ribosomes</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Translation</subject><subject>Transmission electron microscopy</subject><issn>0021-9541</issn><issn>1097-4652</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgiq4fB_-ABLzooZpJ2rQ56uIniqIreCtpd-pm2U1rp0X23xvd1YPgaQ7z8DLzMrYP4gSEkKfTsjlRIDO9xgYgTBrFOpHrbBB2EJkkhi22TTQVQhij1CbbUpnWOs5gwEY3T68Jp75pWiRC4jV1WL-hdyUfu6rCFn3nbOdqz-uKT87vn4fEiwV3fuIK1zn_xpu27tB5TgvfTZAc7bKNys4I91Zzh71cXoyG19Hdw9XN8OwuKhUoHWlZKhlXqakgM1oh6KooMyN1IVNrdZaksZYqAYilGBcyERas1EIpNAjKarXDjpa54YL3HqnL545KnM2sx7qnXIk4NXF4FgI9_EOndd_6cF1QOgWRGCODOl6qsq2JWqzypnVz2y5yEPlX1XmoOv-uOtiDVWJfzHH8K3-6DeB0CT7cDBf_J-W3w8dl5CcsK4YV</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Jiang, Bulin</creator><creator>Zheng, Jiqi</creator><creator>Yao, Hantao</creator><creator>Wang, Yake</creator><creator>Song, Fangfang</creator><creator>Huang, Cui</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid></search><sort><creationdate>202406</creationdate><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><author>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Aging (artificial)</topic><topic>Animals</topic><topic>BMSCs</topic><topic>Bone marrow</topic><topic>Cell Differentiation - genetics</topic><topic>Cells, Cultured</topic><topic>Differentiation (biology)</topic><topic>Female</topic><topic>Histology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Irx5 gene</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oophorectomy</topic><topic>Osteogenesis</topic><topic>Osteogenesis - genetics</topic><topic>Osteoporosis</topic><topic>Osteoporosis - genetics</topic><topic>Osteoporosis - metabolism</topic><topic>Osteoporosis - pathology</topic><topic>Ovariectomy</topic><topic>OxPhos</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Ribonucleic acid</topic><topic>ribosomes</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Translation</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Bulin</creatorcontrib><creatorcontrib>Zheng, Jiqi</creatorcontrib><creatorcontrib>Yao, Hantao</creatorcontrib><creatorcontrib>Wang, Yake</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Bulin</au><au>Zheng, Jiqi</au><au>Yao, Hantao</au><au>Wang, Yake</au><au>Song, Fangfang</au><au>Huang, Cui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>239</volume><issue>6</issue><spage>e31286</spage><epage>n/a</epage><pages>e31286-n/a</pages><issn>0021-9541</issn><issn>1097-4652</issn><eissn>1097-4652</eissn><abstract>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.
IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38666481</pmid><doi>10.1002/jcp.31286</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2024-06, Vol.239 (6), p.e31286-n/a |
issn | 0021-9541 1097-4652 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047943861 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adipogenesis Adipose tissue Aging (artificial) Animals BMSCs Bone marrow Cell Differentiation - genetics Cells, Cultured Differentiation (biology) Female Histology Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Immunofluorescence Irx5 gene Mesenchymal Stem Cells - metabolism Mice Mice, Inbred C57BL Mitochondria Mitochondria - genetics Mitochondria - metabolism Oophorectomy Osteogenesis Osteogenesis - genetics Osteoporosis Osteoporosis - genetics Osteoporosis - metabolism Osteoporosis - pathology Ovariectomy OxPhos Protein Biosynthesis Protein synthesis Proteins Rapamycin Ribonucleic acid ribosomes RNA Signal Transduction TOR protein TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Transcription Factors - genetics Transcription Factors - metabolism Translation Transmission electron microscopy |
title | IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRX5%20suppresses%20osteogenic%20differentiation%20of%20hBMSCs%20by%20inhibiting%20protein%20synthesis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Jiang,%20Bulin&rft.date=2024-06&rft.volume=239&rft.issue=6&rft.spage=e31286&rft.epage=n/a&rft.pages=e31286-n/a&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.31286&rft_dat=%3Cproquest_cross%3E3047943861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067105992&rft_id=info:pmid/38666481&rfr_iscdi=true |