Loading…

IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis

In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2024-06, Vol.239 (6), p.e31286-n/a
Main Authors: Jiang, Bulin, Zheng, Jiqi, Yao, Hantao, Wang, Yake, Song, Fangfang, Huang, Cui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63
container_end_page n/a
container_issue 6
container_start_page e31286
container_title Journal of cellular physiology
container_volume 239
creator Jiang, Bulin
Zheng, Jiqi
Yao, Hantao
Wang, Yake
Song, Fangfang
Huang, Cui
description In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs. IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.
doi_str_mv 10.1002/jcp.31286
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047943861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047943861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiq4fB_-ABLzooZpJ2rQ56uIniqIreCtpd-pm2U1rp0X23xvd1YPgaQ7z8DLzMrYP4gSEkKfTsjlRIDO9xgYgTBrFOpHrbBB2EJkkhi22TTQVQhij1CbbUpnWOs5gwEY3T68Jp75pWiRC4jV1WL-hdyUfu6rCFn3nbOdqz-uKT87vn4fEiwV3fuIK1zn_xpu27tB5TgvfTZAc7bKNys4I91Zzh71cXoyG19Hdw9XN8OwuKhUoHWlZKhlXqakgM1oh6KooMyN1IVNrdZaksZYqAYilGBcyERas1EIpNAjKarXDjpa54YL3HqnL545KnM2sx7qnXIk4NXF4FgI9_EOndd_6cF1QOgWRGCODOl6qsq2JWqzypnVz2y5yEPlX1XmoOv-uOtiDVWJfzHH8K3-6DeB0CT7cDBf_J-W3w8dl5CcsK4YV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067105992</pqid></control><display><type>article</type><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</creator><creatorcontrib>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</creatorcontrib><description>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs. IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</description><identifier>ISSN: 0021-9541</identifier><identifier>ISSN: 1097-4652</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.31286</identifier><identifier>PMID: 38666481</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adipogenesis ; Adipose tissue ; Aging (artificial) ; Animals ; BMSCs ; Bone marrow ; Cell Differentiation - genetics ; Cells, Cultured ; Differentiation (biology) ; Female ; Histology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Immunofluorescence ; Irx5 gene ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Oophorectomy ; Osteogenesis ; Osteogenesis - genetics ; Osteoporosis ; Osteoporosis - genetics ; Osteoporosis - metabolism ; Osteoporosis - pathology ; Ovariectomy ; OxPhos ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Rapamycin ; Ribonucleic acid ; ribosomes ; RNA ; Signal Transduction ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Translation ; Transmission electron microscopy</subject><ispartof>Journal of cellular physiology, 2024-06, Vol.239 (6), p.e31286-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</cites><orcidid>0000-0001-9582-7198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38666481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Bulin</creatorcontrib><creatorcontrib>Zheng, Jiqi</creatorcontrib><creatorcontrib>Yao, Hantao</creatorcontrib><creatorcontrib>Wang, Yake</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs. IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</description><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Aging (artificial)</subject><subject>Animals</subject><subject>BMSCs</subject><subject>Bone marrow</subject><subject>Cell Differentiation - genetics</subject><subject>Cells, Cultured</subject><subject>Differentiation (biology)</subject><subject>Female</subject><subject>Histology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Irx5 gene</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oophorectomy</subject><subject>Osteogenesis</subject><subject>Osteogenesis - genetics</subject><subject>Osteoporosis</subject><subject>Osteoporosis - genetics</subject><subject>Osteoporosis - metabolism</subject><subject>Osteoporosis - pathology</subject><subject>Ovariectomy</subject><subject>OxPhos</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Ribonucleic acid</subject><subject>ribosomes</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Translation</subject><subject>Transmission electron microscopy</subject><issn>0021-9541</issn><issn>1097-4652</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgiq4fB_-ABLzooZpJ2rQ56uIniqIreCtpd-pm2U1rp0X23xvd1YPgaQ7z8DLzMrYP4gSEkKfTsjlRIDO9xgYgTBrFOpHrbBB2EJkkhi22TTQVQhij1CbbUpnWOs5gwEY3T68Jp75pWiRC4jV1WL-hdyUfu6rCFn3nbOdqz-uKT87vn4fEiwV3fuIK1zn_xpu27tB5TgvfTZAc7bKNys4I91Zzh71cXoyG19Hdw9XN8OwuKhUoHWlZKhlXqakgM1oh6KooMyN1IVNrdZaksZYqAYilGBcyERas1EIpNAjKarXDjpa54YL3HqnL545KnM2sx7qnXIk4NXF4FgI9_EOndd_6cF1QOgWRGCODOl6qsq2JWqzypnVz2y5yEPlX1XmoOv-uOtiDVWJfzHH8K3-6DeB0CT7cDBf_J-W3w8dl5CcsK4YV</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Jiang, Bulin</creator><creator>Zheng, Jiqi</creator><creator>Yao, Hantao</creator><creator>Wang, Yake</creator><creator>Song, Fangfang</creator><creator>Huang, Cui</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid></search><sort><creationdate>202406</creationdate><title>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</title><author>Jiang, Bulin ; Zheng, Jiqi ; Yao, Hantao ; Wang, Yake ; Song, Fangfang ; Huang, Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Aging (artificial)</topic><topic>Animals</topic><topic>BMSCs</topic><topic>Bone marrow</topic><topic>Cell Differentiation - genetics</topic><topic>Cells, Cultured</topic><topic>Differentiation (biology)</topic><topic>Female</topic><topic>Histology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Irx5 gene</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oophorectomy</topic><topic>Osteogenesis</topic><topic>Osteogenesis - genetics</topic><topic>Osteoporosis</topic><topic>Osteoporosis - genetics</topic><topic>Osteoporosis - metabolism</topic><topic>Osteoporosis - pathology</topic><topic>Ovariectomy</topic><topic>OxPhos</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Ribonucleic acid</topic><topic>ribosomes</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Translation</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Bulin</creatorcontrib><creatorcontrib>Zheng, Jiqi</creatorcontrib><creatorcontrib>Yao, Hantao</creatorcontrib><creatorcontrib>Wang, Yake</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Bulin</au><au>Zheng, Jiqi</au><au>Yao, Hantao</au><au>Wang, Yake</au><au>Song, Fangfang</au><au>Huang, Cui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>239</volume><issue>6</issue><spage>e31286</spage><epage>n/a</epage><pages>e31286-n/a</pages><issn>0021-9541</issn><issn>1097-4652</issn><eissn>1097-4652</eissn><abstract>In our previous study, IRX5 has been revealed a significant role in adipogenesis of hBMSCs. Considering the expansion of adipose tissue in bone marrow in aged and ovariectomy‐related osteoporosis, the effect of IRX5 on the osteogenesis of BMSCs still needs to be elucidated. In vivo, models of aging‐induced and ovariectomy‐induced osteoporotic mice, and in vitro studies of IRX5 gene gain‐ and loss‐of‐function in hBMSCs were employed. Histology, immunofluorescence, qRT‐PCR, and Western blot analysis were performed to detect the functions of IRX5 in hBMSCs osteogenic differentiation. RNA‐seq, transmission electron microscopy, Seahorse mito‐stress assay, and Surface Sensing of Translation assay were conducted to explore the effect of mammalian/mechanistic target of rapamycin (mTOR)‐mediated ribosomal translation and mitochondrial functions in the regulation of hBMSCs differentiation by IRX5. As a result, elevated IRX5 protein expression levels were observed in the bone marrow of osteoporotic mice compared to normal mice. IRX5 overexpression attenuated osteogenic processes, whereas IRX5 knockdown resulted in enhanced osteogenesis in hBMSCs. RNA‐seq and enrichment analysis unveiled that IRX5 overexpression exerted inhibitory effects on ribosomal translation and mitochondrial functions. Furthermore, the application of the mTOR activator, MHY1485, effectively reversed the inhibitory impact of IRX5 on osteogenesis and mitochondrial functions in hBMSCs. In summary, our findings suggest that IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs. IRX5 restricts mTOR‐mediated ribosomal translation, consequently impairing mitochondrial OxPhos, which in turn results in osteogenic dysfunction of hBMSCs.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38666481</pmid><doi>10.1002/jcp.31286</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2024-06, Vol.239 (6), p.e31286-n/a
issn 0021-9541
1097-4652
1097-4652
language eng
recordid cdi_proquest_miscellaneous_3047943861
source Wiley-Blackwell Read & Publish Collection
subjects Adipogenesis
Adipose tissue
Aging (artificial)
Animals
BMSCs
Bone marrow
Cell Differentiation - genetics
Cells, Cultured
Differentiation (biology)
Female
Histology
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
Immunofluorescence
Irx5 gene
Mesenchymal Stem Cells - metabolism
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Oophorectomy
Osteogenesis
Osteogenesis - genetics
Osteoporosis
Osteoporosis - genetics
Osteoporosis - metabolism
Osteoporosis - pathology
Ovariectomy
OxPhos
Protein Biosynthesis
Protein synthesis
Proteins
Rapamycin
Ribonucleic acid
ribosomes
RNA
Signal Transduction
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Translation
Transmission electron microscopy
title IRX5 suppresses osteogenic differentiation of hBMSCs by inhibiting protein synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRX5%20suppresses%20osteogenic%20differentiation%20of%20hBMSCs%20by%20inhibiting%20protein%20synthesis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Jiang,%20Bulin&rft.date=2024-06&rft.volume=239&rft.issue=6&rft.spage=e31286&rft.epage=n/a&rft.pages=e31286-n/a&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.31286&rft_dat=%3Cproquest_cross%3E3047943861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3136-62c324f79f18963e16fbc8926b27aa68574623511420db250a1a26033e9e13a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067105992&rft_id=info:pmid/38666481&rfr_iscdi=true