Loading…
Challenges faced with 3D-printed electrochemical sensors in analytical applications
Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D p...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2024-09, Vol.416 (21), p.4679-4690 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3 |
container_end_page | 4690 |
container_issue | 21 |
container_start_page | 4679 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 416 |
creator | Pradela‑Filho, Lauro A. Araújo, Diele A. G. Ataide, Vanessa N. Meloni, Gabriel N. Paixão, Thiago R. L. C. |
description | Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.
Graphical Abstract |
doi_str_mv | 10.1007/s00216-024-05308-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047946135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047946135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWqsv4EIG3LgZPblMZmYp9QoFF-o6JOlJO5LO1GSK9O1NLyq4cHUufOdP-Ag5o3BFAcrrCMCozIGJHAoOVV7ukQGVtMqZLGD_pxfsiBzH-A5Ai4rKQ3LEK5m2shyQl9FMe4_tFGPmtMVJ9tn0s4zf5ovQtH2a0aPtQ2dnOG-s9lnENnYhZk2b6Vb7Vb_Z6sXCp6ZvujaekAOnfcTTXR2St_u719FjPn5-eBrdjHPLmexzVzMh6oqBq4XV1kx0aWhhLKutMIXjHIyxlXO2dmiEMBQtK5iWIAQX1iIfkstt7iJ0H0uMvZo30aL3usVuGRUHUdZCUl4k9OIP-t4tQ_r-mqop0AqoSBTbUjZ0MQZ0KkmY67BSFNRaudoqV0m52ihXZTo630UvzRwnPyffjhPAt0BcK51i-H37n9gvVeKMnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091018014</pqid></control><display><type>article</type><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><source>Springer Nature</source><creator>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</creator><creatorcontrib>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</creatorcontrib><description>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.
Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>ISSN: 1618-2650</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-024-05308-7</identifier><identifier>PMID: 38664267</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3-D printers ; Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry ; Chemistry and Materials Science ; Critical Review ; Electrochemistry ; Emerging Trends in Electrochemical Analysis ; Fabrication ; Food Science ; Fused deposition modeling ; Laboratories ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Prototyping ; Reference materials ; Sensors ; Software ; Three dimensional analysis ; Three dimensional printing</subject><ispartof>Analytical and bioanalytical chemistry, 2024-09, Vol.416 (21), p.4679-4690</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38664267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradela‑Filho, Lauro A.</creatorcontrib><creatorcontrib>Araújo, Diele A. G.</creatorcontrib><creatorcontrib>Ataide, Vanessa N.</creatorcontrib><creatorcontrib>Meloni, Gabriel N.</creatorcontrib><creatorcontrib>Paixão, Thiago R. L. C.</creatorcontrib><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.
Graphical Abstract</description><subject>3-D printers</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Critical Review</subject><subject>Electrochemistry</subject><subject>Emerging Trends in Electrochemical Analysis</subject><subject>Fabrication</subject><subject>Food Science</subject><subject>Fused deposition modeling</subject><subject>Laboratories</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Prototyping</subject><subject>Reference materials</subject><subject>Sensors</subject><subject>Software</subject><subject>Three dimensional analysis</subject><subject>Three dimensional printing</subject><issn>1618-2642</issn><issn>1618-2650</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWqsv4EIG3LgZPblMZmYp9QoFF-o6JOlJO5LO1GSK9O1NLyq4cHUufOdP-Ag5o3BFAcrrCMCozIGJHAoOVV7ukQGVtMqZLGD_pxfsiBzH-A5Ai4rKQ3LEK5m2shyQl9FMe4_tFGPmtMVJ9tn0s4zf5ovQtH2a0aPtQ2dnOG-s9lnENnYhZk2b6Vb7Vb_Z6sXCp6ZvujaekAOnfcTTXR2St_u719FjPn5-eBrdjHPLmexzVzMh6oqBq4XV1kx0aWhhLKutMIXjHIyxlXO2dmiEMBQtK5iWIAQX1iIfkstt7iJ0H0uMvZo30aL3usVuGRUHUdZCUl4k9OIP-t4tQ_r-mqop0AqoSBTbUjZ0MQZ0KkmY67BSFNRaudoqV0m52ihXZTo630UvzRwnPyffjhPAt0BcK51i-H37n9gvVeKMnQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pradela‑Filho, Lauro A.</creator><creator>Araújo, Diele A. G.</creator><creator>Ataide, Vanessa N.</creator><creator>Meloni, Gabriel N.</creator><creator>Paixão, Thiago R. L. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240901</creationdate><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><author>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Critical Review</topic><topic>Electrochemistry</topic><topic>Emerging Trends in Electrochemical Analysis</topic><topic>Fabrication</topic><topic>Food Science</topic><topic>Fused deposition modeling</topic><topic>Laboratories</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Prototyping</topic><topic>Reference materials</topic><topic>Sensors</topic><topic>Software</topic><topic>Three dimensional analysis</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradela‑Filho, Lauro A.</creatorcontrib><creatorcontrib>Araújo, Diele A. G.</creatorcontrib><creatorcontrib>Ataide, Vanessa N.</creatorcontrib><creatorcontrib>Meloni, Gabriel N.</creatorcontrib><creatorcontrib>Paixão, Thiago R. L. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradela‑Filho, Lauro A.</au><au>Araújo, Diele A. G.</au><au>Ataide, Vanessa N.</au><au>Meloni, Gabriel N.</au><au>Paixão, Thiago R. L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges faced with 3D-printed electrochemical sensors in analytical applications</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>416</volume><issue>21</issue><spage>4679</spage><epage>4690</epage><pages>4679-4690</pages><issn>1618-2642</issn><issn>1618-2650</issn><eissn>1618-2650</eissn><abstract>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38664267</pmid><doi>10.1007/s00216-024-05308-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2024-09, Vol.416 (21), p.4679-4690 |
issn | 1618-2642 1618-2650 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047946135 |
source | Springer Nature |
subjects | 3-D printers Analytical Chemistry Biochemistry Characterization and Evaluation of Materials Chemical sensors Chemistry Chemistry and Materials Science Critical Review Electrochemistry Emerging Trends in Electrochemical Analysis Fabrication Food Science Fused deposition modeling Laboratories Laboratory Medicine Monitoring/Environmental Analysis Prototyping Reference materials Sensors Software Three dimensional analysis Three dimensional printing |
title | Challenges faced with 3D-printed electrochemical sensors in analytical applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20faced%20with%203D-printed%20electrochemical%20sensors%20in%20analytical%20applications&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Pradela%E2%80%91Filho,%20Lauro%20A.&rft.date=2024-09-01&rft.volume=416&rft.issue=21&rft.spage=4679&rft.epage=4690&rft.pages=4679-4690&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-024-05308-7&rft_dat=%3Cproquest_cross%3E3047946135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091018014&rft_id=info:pmid/38664267&rfr_iscdi=true |