Loading…

Challenges faced with 3D-printed electrochemical sensors in analytical applications

Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D p...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2024-09, Vol.416 (21), p.4679-4690
Main Authors: Pradela‑Filho, Lauro A., Araújo, Diele A. G., Ataide, Vanessa N., Meloni, Gabriel N., Paixão, Thiago R. L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3
container_end_page 4690
container_issue 21
container_start_page 4679
container_title Analytical and bioanalytical chemistry
container_volume 416
creator Pradela‑Filho, Lauro A.
Araújo, Diele A. G.
Ataide, Vanessa N.
Meloni, Gabriel N.
Paixão, Thiago R. L. C.
description Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing. Graphical Abstract
doi_str_mv 10.1007/s00216-024-05308-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047946135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047946135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWqsv4EIG3LgZPblMZmYp9QoFF-o6JOlJO5LO1GSK9O1NLyq4cHUufOdP-Ag5o3BFAcrrCMCozIGJHAoOVV7ukQGVtMqZLGD_pxfsiBzH-A5Ai4rKQ3LEK5m2shyQl9FMe4_tFGPmtMVJ9tn0s4zf5ovQtH2a0aPtQ2dnOG-s9lnENnYhZk2b6Vb7Vb_Z6sXCp6ZvujaekAOnfcTTXR2St_u719FjPn5-eBrdjHPLmexzVzMh6oqBq4XV1kx0aWhhLKutMIXjHIyxlXO2dmiEMBQtK5iWIAQX1iIfkstt7iJ0H0uMvZo30aL3usVuGRUHUdZCUl4k9OIP-t4tQ_r-mqop0AqoSBTbUjZ0MQZ0KkmY67BSFNRaudoqV0m52ihXZTo630UvzRwnPyffjhPAt0BcK51i-H37n9gvVeKMnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091018014</pqid></control><display><type>article</type><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><source>Springer Nature</source><creator>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</creator><creatorcontrib>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</creatorcontrib><description>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing. Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>ISSN: 1618-2650</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-024-05308-7</identifier><identifier>PMID: 38664267</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3-D printers ; Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry ; Chemistry and Materials Science ; Critical Review ; Electrochemistry ; Emerging Trends in Electrochemical Analysis ; Fabrication ; Food Science ; Fused deposition modeling ; Laboratories ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Prototyping ; Reference materials ; Sensors ; Software ; Three dimensional analysis ; Three dimensional printing</subject><ispartof>Analytical and bioanalytical chemistry, 2024-09, Vol.416 (21), p.4679-4690</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38664267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradela‑Filho, Lauro A.</creatorcontrib><creatorcontrib>Araújo, Diele A. G.</creatorcontrib><creatorcontrib>Ataide, Vanessa N.</creatorcontrib><creatorcontrib>Meloni, Gabriel N.</creatorcontrib><creatorcontrib>Paixão, Thiago R. L. C.</creatorcontrib><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing. Graphical Abstract</description><subject>3-D printers</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Critical Review</subject><subject>Electrochemistry</subject><subject>Emerging Trends in Electrochemical Analysis</subject><subject>Fabrication</subject><subject>Food Science</subject><subject>Fused deposition modeling</subject><subject>Laboratories</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Prototyping</subject><subject>Reference materials</subject><subject>Sensors</subject><subject>Software</subject><subject>Three dimensional analysis</subject><subject>Three dimensional printing</subject><issn>1618-2642</issn><issn>1618-2650</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWqsv4EIG3LgZPblMZmYp9QoFF-o6JOlJO5LO1GSK9O1NLyq4cHUufOdP-Ag5o3BFAcrrCMCozIGJHAoOVV7ukQGVtMqZLGD_pxfsiBzH-A5Ai4rKQ3LEK5m2shyQl9FMe4_tFGPmtMVJ9tn0s4zf5ovQtH2a0aPtQ2dnOG-s9lnENnYhZk2b6Vb7Vb_Z6sXCp6ZvujaekAOnfcTTXR2St_u719FjPn5-eBrdjHPLmexzVzMh6oqBq4XV1kx0aWhhLKutMIXjHIyxlXO2dmiEMBQtK5iWIAQX1iIfkstt7iJ0H0uMvZo30aL3usVuGRUHUdZCUl4k9OIP-t4tQ_r-mqop0AqoSBTbUjZ0MQZ0KkmY67BSFNRaudoqV0m52ihXZTo630UvzRwnPyffjhPAt0BcK51i-H37n9gvVeKMnQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pradela‑Filho, Lauro A.</creator><creator>Araújo, Diele A. G.</creator><creator>Ataide, Vanessa N.</creator><creator>Meloni, Gabriel N.</creator><creator>Paixão, Thiago R. L. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240901</creationdate><title>Challenges faced with 3D-printed electrochemical sensors in analytical applications</title><author>Pradela‑Filho, Lauro A. ; Araújo, Diele A. G. ; Ataide, Vanessa N. ; Meloni, Gabriel N. ; Paixão, Thiago R. L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Critical Review</topic><topic>Electrochemistry</topic><topic>Emerging Trends in Electrochemical Analysis</topic><topic>Fabrication</topic><topic>Food Science</topic><topic>Fused deposition modeling</topic><topic>Laboratories</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Prototyping</topic><topic>Reference materials</topic><topic>Sensors</topic><topic>Software</topic><topic>Three dimensional analysis</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradela‑Filho, Lauro A.</creatorcontrib><creatorcontrib>Araújo, Diele A. G.</creatorcontrib><creatorcontrib>Ataide, Vanessa N.</creatorcontrib><creatorcontrib>Meloni, Gabriel N.</creatorcontrib><creatorcontrib>Paixão, Thiago R. L. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradela‑Filho, Lauro A.</au><au>Araújo, Diele A. G.</au><au>Ataide, Vanessa N.</au><au>Meloni, Gabriel N.</au><au>Paixão, Thiago R. L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges faced with 3D-printed electrochemical sensors in analytical applications</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>416</volume><issue>21</issue><spage>4679</spage><epage>4690</epage><pages>4679-4690</pages><issn>1618-2642</issn><issn>1618-2650</issn><eissn>1618-2650</eissn><abstract>Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers’ price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high “entry barrier” to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38664267</pmid><doi>10.1007/s00216-024-05308-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2024-09, Vol.416 (21), p.4679-4690
issn 1618-2642
1618-2650
1618-2650
language eng
recordid cdi_proquest_miscellaneous_3047946135
source Springer Nature
subjects 3-D printers
Analytical Chemistry
Biochemistry
Characterization and Evaluation of Materials
Chemical sensors
Chemistry
Chemistry and Materials Science
Critical Review
Electrochemistry
Emerging Trends in Electrochemical Analysis
Fabrication
Food Science
Fused deposition modeling
Laboratories
Laboratory Medicine
Monitoring/Environmental Analysis
Prototyping
Reference materials
Sensors
Software
Three dimensional analysis
Three dimensional printing
title Challenges faced with 3D-printed electrochemical sensors in analytical applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20faced%20with%203D-printed%20electrochemical%20sensors%20in%20analytical%20applications&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Pradela%E2%80%91Filho,%20Lauro%20A.&rft.date=2024-09-01&rft.volume=416&rft.issue=21&rft.spage=4679&rft.epage=4690&rft.pages=4679-4690&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-024-05308-7&rft_dat=%3Cproquest_cross%3E3047946135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-f92449820f94cacbda7b15bc29c4b5f330bbc8ffc9feb44b1ec252a604434cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091018014&rft_id=info:pmid/38664267&rfr_iscdi=true