Loading…
Synthesis and preliminary evaluation of Ag-TiO2/CNT hybrid nanocomposite for the degradation of polystyrene microplastics under solar irradiation
Currently, microplastics (MPs) are considered as emerging aqueous pollutants. However, existing methods for the separation and treatment of MPs from an aquatic environment are limited by their low efficiency. Advanced oxidation processes (AOPs) are novel techniques that employ photo-induced electron...
Saved in:
Published in: | Environmental science and pollution research international 2024-05, Vol.31 (22), p.32863-32874 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Currently, microplastics (MPs) are considered as emerging aqueous pollutants. However, existing methods for the separation and treatment of MPs from an aquatic environment are limited by their low efficiency. Advanced oxidation processes (AOPs) are novel techniques that employ photo-induced electron/hole pairs to generate active radicals for MP mineralization. Thus, in this study, a photocatalyst, i.e., Ag
+
ion-doped TiO
2
, heterojunctioned with carbon nanotubes (CNT), was synthesized to study the degradation of typical MPs such as polystyrene (PS) under solar irradiation. Effectiveness of the prepared photocatalyst for the PS degradation was estimated through FESEM, FTIR, total organic carbon (TOC) analyzer, and gas chromatography-mass spectroscopy (GC–MS). Quantitatively, 31.7% degradation of PS microbeads was achieved within 48 h. Therefore, this study provides an efficient and cost-effective strategy for the degradation of MPs from the aqueous medium. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-024-33438-z |