Loading…
Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming
The fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations....
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (36), p.e2402273-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3 |
container_end_page | n/a |
container_issue | 36 |
container_start_page | e2402273 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Tan, Dongchen Sun, Nan Huang, Jijie Zhang, Zhaorui Zeng, Lijun Li, Qikun Bi, Sheng Bu, Jingyuan Peng, Yan Guo, Qinlei Jiang, Chengming |
description | The fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write‐verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non‐gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy‐induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non‐cumulative resistance effect allows non‐volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write‐verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next‐generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.
Non‐volatile memories based on vacancy‐induced oxidized monolayer Ti3C2Tx MXene demonstrate large switching ratio, high resistive stability, and endurance. Through a carrier trapping and releasing mechanism, the memory possesses a non‐accumulative resistive effect, enabling the memory to reach an effective 0/1 logic level by direct reprogramming without the need for a write verification operation. |
doi_str_mv | 10.1002/smll.202402273 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3048768479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112450849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3</originalsourceid><addsrcrecordid>eNqF0M9Kw0AQBvBFFFurV48S8OKldf8l2RylWC00KqjV27JJZktKkq27DZKbj-Az-iQmtFbw4mnm8JuP4UPolOARwZheurIoRhRTjikN2R7qk4CwYSBotL_bCe6hI-eWGDNCeXiIeky0whdhH93FpjKFasB6c5WqKm2-Pj6nVVankHnxK1TgxVAa23jaWO_F5mtowRxsrjs5sQDegzULq8oyrxbH6ECrwsHJdg7Q8-T6aXw7nN3fTMdXs2HKQsaGRIMveAKc-ZpEKuEBFhHVPGI85TyjoRIpz7KEhKp9KtAEZxnz_QR8XwHVig3QxSZ3Zc1bDW4ty9ylUBSqAlM7yTAXYSB4GLX0_A9dmtpW7XeSkbYPHwveqdFGpdY4Z0HLlc1LZRtJsOyall3Tctd0e3C2ja2TErId_6m2BdEGvOcFNP_Eycd4NvsN_wb5QI06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112450849</pqid></control><display><type>article</type><title>Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tan, Dongchen ; Sun, Nan ; Huang, Jijie ; Zhang, Zhaorui ; Zeng, Lijun ; Li, Qikun ; Bi, Sheng ; Bu, Jingyuan ; Peng, Yan ; Guo, Qinlei ; Jiang, Chengming</creator><creatorcontrib>Tan, Dongchen ; Sun, Nan ; Huang, Jijie ; Zhang, Zhaorui ; Zeng, Lijun ; Li, Qikun ; Bi, Sheng ; Bu, Jingyuan ; Peng, Yan ; Guo, Qinlei ; Jiang, Chengming</creatorcontrib><description>The fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write‐verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non‐gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy‐induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non‐cumulative resistance effect allows non‐volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write‐verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next‐generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.
Non‐volatile memories based on vacancy‐induced oxidized monolayer Ti3C2Tx MXene demonstrate large switching ratio, high resistive stability, and endurance. Through a carrier trapping and releasing mechanism, the memory possesses a non‐accumulative resistive effect, enabling the memory to reach an effective 0/1 logic level by direct reprogramming without the need for a write verification operation.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402273</identifier><identifier>PMID: 38682587</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Monolayers ; MXene ; MXenes ; non‐gradual switch ; non‐volatile memory ; vacancy ; write‐verify‐free</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (36), p.e2402273-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3</citedby><cites>FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3</cites><orcidid>0000-0003-2779-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38682587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Dongchen</creatorcontrib><creatorcontrib>Sun, Nan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhang, Zhaorui</creatorcontrib><creatorcontrib>Zeng, Lijun</creatorcontrib><creatorcontrib>Li, Qikun</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Bu, Jingyuan</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><creatorcontrib>Guo, Qinlei</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><title>Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write‐verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non‐gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy‐induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non‐cumulative resistance effect allows non‐volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write‐verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next‐generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.
Non‐volatile memories based on vacancy‐induced oxidized monolayer Ti3C2Tx MXene demonstrate large switching ratio, high resistive stability, and endurance. Through a carrier trapping and releasing mechanism, the memory possesses a non‐accumulative resistive effect, enabling the memory to reach an effective 0/1 logic level by direct reprogramming without the need for a write verification operation.</description><subject>Algorithms</subject><subject>Monolayers</subject><subject>MXene</subject><subject>MXenes</subject><subject>non‐gradual switch</subject><subject>non‐volatile memory</subject><subject>vacancy</subject><subject>write‐verify‐free</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0M9Kw0AQBvBFFFurV48S8OKldf8l2RylWC00KqjV27JJZktKkq27DZKbj-Az-iQmtFbw4mnm8JuP4UPolOARwZheurIoRhRTjikN2R7qk4CwYSBotL_bCe6hI-eWGDNCeXiIeky0whdhH93FpjKFasB6c5WqKm2-Pj6nVVankHnxK1TgxVAa23jaWO_F5mtowRxsrjs5sQDegzULq8oyrxbH6ECrwsHJdg7Q8-T6aXw7nN3fTMdXs2HKQsaGRIMveAKc-ZpEKuEBFhHVPGI85TyjoRIpz7KEhKp9KtAEZxnz_QR8XwHVig3QxSZ3Zc1bDW4ty9ylUBSqAlM7yTAXYSB4GLX0_A9dmtpW7XeSkbYPHwveqdFGpdY4Z0HLlc1LZRtJsOyall3Tctd0e3C2ja2TErId_6m2BdEGvOcFNP_Eycd4NvsN_wb5QI06</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tan, Dongchen</creator><creator>Sun, Nan</creator><creator>Huang, Jijie</creator><creator>Zhang, Zhaorui</creator><creator>Zeng, Lijun</creator><creator>Li, Qikun</creator><creator>Bi, Sheng</creator><creator>Bu, Jingyuan</creator><creator>Peng, Yan</creator><creator>Guo, Qinlei</creator><creator>Jiang, Chengming</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid></search><sort><creationdate>20240901</creationdate><title>Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming</title><author>Tan, Dongchen ; Sun, Nan ; Huang, Jijie ; Zhang, Zhaorui ; Zeng, Lijun ; Li, Qikun ; Bi, Sheng ; Bu, Jingyuan ; Peng, Yan ; Guo, Qinlei ; Jiang, Chengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Monolayers</topic><topic>MXene</topic><topic>MXenes</topic><topic>non‐gradual switch</topic><topic>non‐volatile memory</topic><topic>vacancy</topic><topic>write‐verify‐free</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Dongchen</creatorcontrib><creatorcontrib>Sun, Nan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhang, Zhaorui</creatorcontrib><creatorcontrib>Zeng, Lijun</creatorcontrib><creatorcontrib>Li, Qikun</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Bu, Jingyuan</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><creatorcontrib>Guo, Qinlei</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Dongchen</au><au>Sun, Nan</au><au>Huang, Jijie</au><au>Zhang, Zhaorui</au><au>Zeng, Lijun</au><au>Li, Qikun</au><au>Bi, Sheng</au><au>Bu, Jingyuan</au><au>Peng, Yan</au><au>Guo, Qinlei</au><au>Jiang, Chengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>36</issue><spage>e2402273</spage><epage>n/a</epage><pages>e2402273-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write‐verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non‐gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy‐induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non‐cumulative resistance effect allows non‐volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write‐verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next‐generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.
Non‐volatile memories based on vacancy‐induced oxidized monolayer Ti3C2Tx MXene demonstrate large switching ratio, high resistive stability, and endurance. Through a carrier trapping and releasing mechanism, the memory possesses a non‐accumulative resistive effect, enabling the memory to reach an effective 0/1 logic level by direct reprogramming without the need for a write verification operation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38682587</pmid><doi>10.1002/smll.202402273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (36), p.e2402273-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3048768479 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Monolayers MXene MXenes non‐gradual switch non‐volatile memory vacancy write‐verify‐free |
title | Monolayer Vacancy‐Induced MXene Memory for Write‐Verify‐Free Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolayer%20Vacancy%E2%80%90Induced%20MXene%20Memory%20for%20Write%E2%80%90Verify%E2%80%90Free%20Programming&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tan,%20Dongchen&rft.date=2024-09-01&rft.volume=20&rft.issue=36&rft.spage=e2402273&rft.epage=n/a&rft.pages=e2402273-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402273&rft_dat=%3Cproquest_cross%3E3112450849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-1fe584be435f19ab460892f4934c44d27a8c4ddb17aaca6f10dd355be55ae2fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112450849&rft_id=info:pmid/38682587&rfr_iscdi=true |