Loading…

Structural and functional connectivity in hydrocephalus: a scoping review

Optimizing the treatment of hydrocephalus remains a major challenge in adult and pediatric neurosurgery. Currently, clinical treatment relies heavily on anatomic imaging of ventricular size and clinical presentation. The emergence of functional and structural brain connectivity imaging has provided...

Full description

Saved in:
Bibliographic Details
Published in:Neurosurgical review 2024-05, Vol.47 (1), p.201, Article 201
Main Authors: Peña Pino, Isabela, Fellows, Emily, McGovern, Robert A., Chen, Clark C., Sandoval-Garcia, Carolina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimizing the treatment of hydrocephalus remains a major challenge in adult and pediatric neurosurgery. Currently, clinical treatment relies heavily on anatomic imaging of ventricular size and clinical presentation. The emergence of functional and structural brain connectivity imaging has provided the basis for a new paradigm in the management of hydrocephalus. Here we review the pertinent advances in this field. Following PRISMA-ScR guidelines for scoping reviews, we searched PubMed for relevant literature from 1994 to April 2023 using hydrocephalus and MRI-related terms. Included articles reported original MRI data on human subjects with hydrocephalus, while excluding non-English or pre-1994 publications that didn't match the study framework. The review identified 44 studies that investigated functional and/or structural connectivity using various MRI techniques across different hydrocephalus populations. While there is significant heterogeneity in imaging technology and connectivity analysis, there is broad consensus in the literature that 1) hydrocephalus is associated with disruption of functional and structural connectivity, 2) this disruption in cerebral connectivity can be further associated with neurologic compromise 3) timely treatment of hydrocephalus restores both cerebral connectivity and neurologic compromise. The robustness and consistency of these findings vary as a function of patient age, hydrocephalus etiology, and the connectivity region of interest studied. Functional and structural brain connectivity imaging shows potential as an imaging biomarker that may facilitate optimization of hydrocephalus treatment. Future research should focus on standardizing regions of interest as well as identifying connectivity analysis most pertinent to clinical outcome.
ISSN:1437-2320
1437-2320
DOI:10.1007/s10143-024-02430-z