Loading…

Numerical study of hemodynamic flow in the aortic vessel of Williams syndrome patient with congenital heart disease

Congenital arterial stenosis such as supravalvar aortic stenosis (SVAS) are highly prevalent in Williams syndrome (WS) and other arteriopathies pose a substantial health risk. Conventional tools for severity assessment, including clinical findings and pressure gradient estimations, often fall short...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2024-05, Vol.168, p.112124-112124, Article 112124
Main Authors: Jack, Justin T., Jensen, Morten, Collins, R. Thomas, Chan, Frandics Pak, Millett, Paul C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Congenital arterial stenosis such as supravalvar aortic stenosis (SVAS) are highly prevalent in Williams syndrome (WS) and other arteriopathies pose a substantial health risk. Conventional tools for severity assessment, including clinical findings and pressure gradient estimations, often fall short due to their susceptibility to transient physiological changes and disease stage influences. Moreover, in the pediatric population, the severity of these and other congenital heart defects (CHDs) often restricts the applicability of invasive techniques for obtaining crucial physiological data. Conversely, evaluating CHDs and their progression requires a comprehensive understanding of intracardiac blood flow. Current imaging modalities, such as blood speckle imaging (BSI) and four-dimensional magnetic resonance imaging (4D MRI) face limitations in resolving flow data, especially in cases of elevated flow velocities. To address these challenges, we devised a computational framework employing zero-dimensional (0D) lumped parameter models coupled with patient-specific reconstructed geometries pre- and post-surgical intervention to execute computational fluid dynamic (CFD) simulations. This framework facilitates the analysis and visualization of intricate blood flow patterns, offering insights into geometry and flow dynamics alterations impacting cardiac function. In this study, we aim to assess the efficacy of surgical intervention in correcting an extreme aortic defect in a patient with WS, leading to reductions in wall shear stress (WSS), maximum velocity magnitude, pressure drop, and ultimately a decrease in cardiac workload.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2024.112124