Loading…

Phosphorus immobilization/release behavior of lanthanum-modified bentonite amended sediment under the dual effects of pH and dissolved organic carbon

Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2024-06, Vol.358, p.142221-142221, Article 142221
Main Authors: Li, Xiaodi, Zhou, Xiaomeng, Yu, Junxia, Xiao, Chunqiao, Chi, Ruan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended to overlying water with high pH and DOC have not yet been studied. In the present work, batch adsorption and long-term incubation experiments were performed to study the combined effects of pH and DOC on the P control by LMB. The results showed that the coexistence of low concentration of DOC or preloading with some DOC had a negligible effect on P binding by LMB. In the presence of DOC, the P adsorption was more pronounced at pH 7.5 and was measurably less at pH 9.5. Additionally, the pH value was the key factor that decided the P removal at low DOC concentration. The increase in pH and DOC could significantly promote the release of sediment P with a higher EPC0. Under such condition, a higher LMB dosage was needed to effectively control the P releasing from sediment. In sediment/water system with intermittent resuspension, the alkaline conditions greatly facilitated the release of sediment P and DOC, which increased from 0.087 to 0.581 mg/L, and from 11.05 to 26.56 mg/L, respectively. Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened, and a tailor-made scheme became essential for determining the optimum dosage. The desorption experiments verified that the previously loaded phosphorus on LMB was hard to be released even under high pH and DOC conditions, with an accumulative desorption rate of less than 2%. Accordingly, to achieve the best P controlling efficiency, the application strategies depending on LMB should avoid the high DOC loading period such as the rainy season and algal blooms. [Display omitted] •PH value was the key factor that decided the P removal efficiency at low DOC concentration.•The rising in pH and DOC could significantly promote the P release from sediment.•Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened.•The P desorption rate on P-loaded LMB was lower than 2% even in algae blooms.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2024.142221