Loading…

Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics

Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal ca...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2024-04, Vol.132 (16), p.163603-163603, Article 163603
Main Authors: Wang, Yu, Zhang, Mai, Shen, Zhen, Xu, Guan-Ting, Niu, Rui, Sun, Fang-Wen, Guo, Guang-Can, Dong, Chun-Hua
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c258t-4f5a20f43853cc9ebe08b1048de1c00f009e7bb38c70f9e938ad2a3a4b1618ec3
container_end_page 163603
container_issue 16
container_start_page 163603
container_title Physical review letters
container_volume 132
creator Wang, Yu
Zhang, Mai
Shen, Zhen
Xu, Guan-Ting
Niu, Rui
Sun, Fang-Wen
Guo, Guang-Can
Dong, Chun-Hua
description Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.
doi_str_mv 10.1103/PhysRevLett.132.163603
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050940368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050940368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-4f5a20f43853cc9ebe08b1048de1c00f009e7bb38c70f9e938ad2a3a4b1618ec3</originalsourceid><addsrcrecordid>eNpN0E1Lw0AQBuBFFFurf6Hk6CV1JpOP3aOtVoVqRfS8bDYTGslHzSZC_r2Rqniay_vODI8Qc4QFItDV825wL_y54a5bIAULjCkGOhJThET5CWJ4LKYAhL4CSCbizLl3AMAglqdiQjIBDCM1FcvtvmsqtjtTF9aU3rrlj55rO3irpkq9pXGceU3tPfZlV-xL9p6auixqNq13M9SmKqw7Fye5KR1f_MyZeFvfvq7u_c327mF1vfFtEMnOD_PIBJCHJCOyVnHKIFOEUGaMFiAHUJykKUmbQK5YkTRZYMiEKcYo2dJMXB727ttm_NF1uiqc5bI0NTe90wQRqBAolmM0PkRt2zjXcq73bVGZdtAI-ttP__PTo58--I3F-c-NPq04-6v9gtEX2t1u0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050940368</pqid></control><display><type>article</type><title>Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Wang, Yu ; Zhang, Mai ; Shen, Zhen ; Xu, Guan-Ting ; Niu, Rui ; Sun, Fang-Wen ; Guo, Guang-Can ; Dong, Chun-Hua</creator><creatorcontrib>Wang, Yu ; Zhang, Mai ; Shen, Zhen ; Xu, Guan-Ting ; Niu, Rui ; Sun, Fang-Wen ; Guo, Guang-Can ; Dong, Chun-Hua</creatorcontrib><description>Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.132.163603</identifier><identifier>PMID: 38701459</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2024-04, Vol.132 (16), p.163603-163603, Article 163603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-4f5a20f43853cc9ebe08b1048de1c00f009e7bb38c70f9e938ad2a3a4b1618ec3</cites><orcidid>0000-0002-9625-7390 ; 0000-0002-9408-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38701459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Mai</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Xu, Guan-Ting</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>Sun, Fang-Wen</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><creatorcontrib>Dong, Chun-Hua</creatorcontrib><title>Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0E1Lw0AQBuBFFFurf6Hk6CV1JpOP3aOtVoVqRfS8bDYTGslHzSZC_r2Rqniay_vODI8Qc4QFItDV825wL_y54a5bIAULjCkGOhJThET5CWJ4LKYAhL4CSCbizLl3AMAglqdiQjIBDCM1FcvtvmsqtjtTF9aU3rrlj55rO3irpkq9pXGceU3tPfZlV-xL9p6auixqNq13M9SmKqw7Fye5KR1f_MyZeFvfvq7u_c327mF1vfFtEMnOD_PIBJCHJCOyVnHKIFOEUGaMFiAHUJykKUmbQK5YkTRZYMiEKcYo2dJMXB727ttm_NF1uiqc5bI0NTe90wQRqBAolmM0PkRt2zjXcq73bVGZdtAI-ttP__PTo58--I3F-c-NPq04-6v9gtEX2t1u0Q</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Wang, Yu</creator><creator>Zhang, Mai</creator><creator>Shen, Zhen</creator><creator>Xu, Guan-Ting</creator><creator>Niu, Rui</creator><creator>Sun, Fang-Wen</creator><creator>Guo, Guang-Can</creator><creator>Dong, Chun-Hua</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9625-7390</orcidid><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid></search><sort><creationdate>20240419</creationdate><title>Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics</title><author>Wang, Yu ; Zhang, Mai ; Shen, Zhen ; Xu, Guan-Ting ; Niu, Rui ; Sun, Fang-Wen ; Guo, Guang-Can ; Dong, Chun-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-4f5a20f43853cc9ebe08b1048de1c00f009e7bb38c70f9e938ad2a3a4b1618ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Mai</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Xu, Guan-Ting</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>Sun, Fang-Wen</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><creatorcontrib>Dong, Chun-Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zhang, Mai</au><au>Shen, Zhen</au><au>Xu, Guan-Ting</au><au>Niu, Rui</au><au>Sun, Fang-Wen</au><au>Guo, Guang-Can</au><au>Dong, Chun-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-04-19</date><risdate>2024</risdate><volume>132</volume><issue>16</issue><spage>163603</spage><epage>163603</epage><pages>163603-163603</pages><artnum>163603</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.</abstract><cop>United States</cop><pmid>38701459</pmid><doi>10.1103/PhysRevLett.132.163603</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9625-7390</orcidid><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-04, Vol.132 (16), p.163603-163603, Article 163603
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_3050940368
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optomechanical%20Frequency%20Comb%20Based%20on%20Multiple%20Nonlinear%20Dynamics&rft.jtitle=Physical%20review%20letters&rft.au=Wang,%20Yu&rft.date=2024-04-19&rft.volume=132&rft.issue=16&rft.spage=163603&rft.epage=163603&rft.pages=163603-163603&rft.artnum=163603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.132.163603&rft_dat=%3Cproquest_cross%3E3050940368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-4f5a20f43853cc9ebe08b1048de1c00f009e7bb38c70f9e938ad2a3a4b1618ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3050940368&rft_id=info:pmid/38701459&rfr_iscdi=true