Loading…

An efficient method by combining different basis sets and SAPT levels

In symmetry-adapted perturbation theory (SAPT), accurate calculations on non-covalent interaction (NCI) for large complexes with more than 50 atoms are time-consuming using large basis sets. More efficient ones with smaller basis sets usually result in poor prediction in terms of dispersion and over...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2024-08, Vol.45 (22), p.1936-1944
Main Authors: Deng, Zhihao, Liu, Chang, Li, Zhongwei, Zhang, Yingsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In symmetry-adapted perturbation theory (SAPT), accurate calculations on non-covalent interaction (NCI) for large complexes with more than 50 atoms are time-consuming using large basis sets. More efficient ones with smaller basis sets usually result in poor prediction in terms of dispersion and overall energies. In this study, we propose two composite methods with baseline calculated at SAPT2/aug-cc-pVDZ and SAPT2/aug-cc-pVTZ with dispersion term corrected at SAPT2+ level using bond functions and smaller basis set with MP2 corrections respectively. Benchmark results on representative NCI data sets, such as S22, S66, and so forth, show significant improvements on the accuracy compared to the original SAPT Silver standard and comparable to SAPT Gold standard in some cases with much less computational cost.
ISSN:0192-8651
1096-987X
1096-987X
DOI:10.1002/jcc.27386