Loading…

BC-QNet: A quantum-infused ELM model for breast cancer diagnosis

The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet trans...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2024-06, Vol.175, p.108483, Article 108483
Main Authors: Bilal, Anas, Imran, Azhar, Liu, Xiaowen, Liu, Xiling, Ahmad, Zohaib, Shafiq, Muhammad, El-Sherbeeny, Ahmed M., Long, Haixia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c262t-49a55c43346e574166432409a4d0869c6eccc24407e6c3fef8e667838bcd98573
container_end_page
container_issue
container_start_page 108483
container_title Computers in biology and medicine
container_volume 175
creator Bilal, Anas
Imran, Azhar
Liu, Xiaowen
Liu, Xiling
Ahmad, Zohaib
Shafiq, Muhammad
El-Sherbeeny, Ahmed M.
Long, Haixia
description The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes. •Hybrid ELM and FuNet model utilizes MIAS for breast cancer classification.•Enhanced Q-GBGWO boosts ELM classification accuracy.•Feature fusion strategy enhances breast cancer detection.•Q-GBGWO optimizes ELM, outperforming traditional methods.•High accuracy rates: 96.54% Normal, 97.24% Benign, 98.01% Malignant.
doi_str_mv 10.1016/j.compbiomed.2024.108483
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051423238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524005675</els_id><sourcerecordid>3051423238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-49a55c43346e574166432409a4d0869c6eccc24407e6c3fef8e667838bcd98573</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWj_-ggS8eNk6m2SzWU9qqR9QFUHPIc3OSkp3U5NdwX9vSiuCF08DM887MzyE0BzGOeTyYjG2vl3NnW-xHjNgIrWVUHyHjHJVVhkUXOySEUAOmVCsOCCHMS4AQACHfXLAVQmiAhiRq5tJ9vKE_SW9ph-D6fqhzVzXDBFrOp090tbXuKSND3Qe0MSeWtNZDLR25r3z0cVjsteYZcSTbT0ib7fT18l9Nnu-e5hczzLLJOszUZmisIJzIbEoRS6l4ExAZUQNSlZWorWWCQElSssbbBRKWSqu5rauVFHyI3K-2bsK_mPA2OvWRYvLpenQD1FzKHLBOOMqoWd_0IUfQpe-W1O8VEWSlCi1oWzwMQZs9Cq41oQvnYNeW9YL_WtZry3rjeUUPd0eGObr2U_wR2sCbjYAJiOfDoOO1mESV7uAtte1d_9f-QYKNI9T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053785187</pqid></control><display><type>article</type><title>BC-QNet: A quantum-infused ELM model for breast cancer diagnosis</title><source>Elsevier</source><creator>Bilal, Anas ; Imran, Azhar ; Liu, Xiaowen ; Liu, Xiling ; Ahmad, Zohaib ; Shafiq, Muhammad ; El-Sherbeeny, Ahmed M. ; Long, Haixia</creator><creatorcontrib>Bilal, Anas ; Imran, Azhar ; Liu, Xiaowen ; Liu, Xiling ; Ahmad, Zohaib ; Shafiq, Muhammad ; El-Sherbeeny, Ahmed M. ; Long, Haixia</creatorcontrib><description>The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes. •Hybrid ELM and FuNet model utilizes MIAS for breast cancer classification.•Enhanced Q-GBGWO boosts ELM classification accuracy.•Feature fusion strategy enhances breast cancer detection.•Q-GBGWO optimizes ELM, outperforming traditional methods.•High accuracy rates: 96.54% Normal, 97.24% Benign, 98.01% Malignant.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108483</identifier><identifier>PMID: 38704900</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Biopsy ; Breast cancer ; Breast cancer diagnosis ; Breast Neoplasms - diagnostic imaging ; Classification ; Datasets ; Deep learning ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Enhanced diagnostic accuracy ; Extreme learning machine (ELM) ; Feature extraction ; Feature fusion ; Female ; Humans ; Machine Learning ; Mammography ; Mammography - methods ; Medical prognosis ; Optimization ; Transfer learning</subject><ispartof>Computers in biology and medicine, 2024-06, Vol.175, p.108483, Article 108483</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-49a55c43346e574166432409a4d0869c6eccc24407e6c3fef8e667838bcd98573</cites><orcidid>0000-0002-2484-9389 ; 0000-0002-7760-3374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38704900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Imran, Azhar</creatorcontrib><creatorcontrib>Liu, Xiaowen</creatorcontrib><creatorcontrib>Liu, Xiling</creatorcontrib><creatorcontrib>Ahmad, Zohaib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><creatorcontrib>El-Sherbeeny, Ahmed M.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><title>BC-QNet: A quantum-infused ELM model for breast cancer diagnosis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes. •Hybrid ELM and FuNet model utilizes MIAS for breast cancer classification.•Enhanced Q-GBGWO boosts ELM classification accuracy.•Feature fusion strategy enhances breast cancer detection.•Q-GBGWO optimizes ELM, outperforming traditional methods.•High accuracy rates: 96.54% Normal, 97.24% Benign, 98.01% Malignant.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Breast cancer diagnosis</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Enhanced diagnostic accuracy</subject><subject>Extreme learning machine (ELM)</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Medical prognosis</subject><subject>Optimization</subject><subject>Transfer learning</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWj_-ggS8eNk6m2SzWU9qqR9QFUHPIc3OSkp3U5NdwX9vSiuCF08DM887MzyE0BzGOeTyYjG2vl3NnW-xHjNgIrWVUHyHjHJVVhkUXOySEUAOmVCsOCCHMS4AQACHfXLAVQmiAhiRq5tJ9vKE_SW9ph-D6fqhzVzXDBFrOp090tbXuKSND3Qe0MSeWtNZDLR25r3z0cVjsteYZcSTbT0ib7fT18l9Nnu-e5hczzLLJOszUZmisIJzIbEoRS6l4ExAZUQNSlZWorWWCQElSssbbBRKWSqu5rauVFHyI3K-2bsK_mPA2OvWRYvLpenQD1FzKHLBOOMqoWd_0IUfQpe-W1O8VEWSlCi1oWzwMQZs9Cq41oQvnYNeW9YL_WtZry3rjeUUPd0eGObr2U_wR2sCbjYAJiOfDoOO1mESV7uAtte1d_9f-QYKNI9T</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Bilal, Anas</creator><creator>Imran, Azhar</creator><creator>Liu, Xiaowen</creator><creator>Liu, Xiling</creator><creator>Ahmad, Zohaib</creator><creator>Shafiq, Muhammad</creator><creator>El-Sherbeeny, Ahmed M.</creator><creator>Long, Haixia</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid></search><sort><creationdate>202406</creationdate><title>BC-QNet: A quantum-infused ELM model for breast cancer diagnosis</title><author>Bilal, Anas ; Imran, Azhar ; Liu, Xiaowen ; Liu, Xiling ; Ahmad, Zohaib ; Shafiq, Muhammad ; El-Sherbeeny, Ahmed M. ; Long, Haixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-49a55c43346e574166432409a4d0869c6eccc24407e6c3fef8e667838bcd98573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Breast cancer diagnosis</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Enhanced diagnostic accuracy</topic><topic>Extreme learning machine (ELM)</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Medical prognosis</topic><topic>Optimization</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Imran, Azhar</creatorcontrib><creatorcontrib>Liu, Xiaowen</creatorcontrib><creatorcontrib>Liu, Xiling</creatorcontrib><creatorcontrib>Ahmad, Zohaib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><creatorcontrib>El-Sherbeeny, Ahmed M.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Anas</au><au>Imran, Azhar</au><au>Liu, Xiaowen</au><au>Liu, Xiling</au><au>Ahmad, Zohaib</au><au>Shafiq, Muhammad</au><au>El-Sherbeeny, Ahmed M.</au><au>Long, Haixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BC-QNet: A quantum-infused ELM model for breast cancer diagnosis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-06</date><risdate>2024</risdate><volume>175</volume><spage>108483</spage><pages>108483-</pages><artnum>108483</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes. •Hybrid ELM and FuNet model utilizes MIAS for breast cancer classification.•Enhanced Q-GBGWO boosts ELM classification accuracy.•Feature fusion strategy enhances breast cancer detection.•Q-GBGWO optimizes ELM, outperforming traditional methods.•High accuracy rates: 96.54% Normal, 97.24% Benign, 98.01% Malignant.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38704900</pmid><doi>10.1016/j.compbiomed.2024.108483</doi><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-06, Vol.175, p.108483, Article 108483
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3051423238
source Elsevier
subjects Accuracy
Artificial intelligence
Artificial neural networks
Biopsy
Breast cancer
Breast cancer diagnosis
Breast Neoplasms - diagnostic imaging
Classification
Datasets
Deep learning
Diagnosis
Diagnosis, Computer-Assisted - methods
Enhanced diagnostic accuracy
Extreme learning machine (ELM)
Feature extraction
Feature fusion
Female
Humans
Machine Learning
Mammography
Mammography - methods
Medical prognosis
Optimization
Transfer learning
title BC-QNet: A quantum-infused ELM model for breast cancer diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BC-QNet:%20A%20quantum-infused%20ELM%20model%20for%20breast%20cancer%20diagnosis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Bilal,%20Anas&rft.date=2024-06&rft.volume=175&rft.spage=108483&rft.pages=108483-&rft.artnum=108483&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108483&rft_dat=%3Cproquest_cross%3E3051423238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-49a55c43346e574166432409a4d0869c6eccc24407e6c3fef8e667838bcd98573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053785187&rft_id=info:pmid/38704900&rfr_iscdi=true