Loading…

Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

Objective To investigate the prognostic value of 18 F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treat...

Full description

Saved in:
Bibliographic Details
Published in:Annals of nuclear medicine 2024-08, Vol.38 (8), p.647-658
Main Authors: Lue, Kun-Han, Chen, Yu-Hung, Chu, Sung-Chao, Lin, Chih-Bin, Wang, Tso-Fu, Liu, Shu-Hsin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c233t-9c19c0e5e5d584656e99fb7a0df3cf6dbe297950e8d4026fe13bfd19b26fa27f3
container_end_page 658
container_issue 8
container_start_page 647
container_title Annals of nuclear medicine
container_volume 38
creator Lue, Kun-Han
Chen, Yu-Hung
Chu, Sung-Chao
Lin, Chih-Bin
Wang, Tso-Fu
Liu, Shu-Hsin
description Objective To investigate the prognostic value of 18 F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. Methods We retrospectively analyzed the pre-treatment 18 F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog ( n  = 166) and digital ( n  = 51) PET cohorts. 18 F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. Results In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV max , metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p  
doi_str_mv 10.1007/s12149-024-01936-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051423502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051423502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-9c19c0e5e5d584656e99fb7a0df3cf6dbe297950e8d4026fe13bfd19b26fa27f3</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtRcFz9A54CXjxs1nz0pzdZZ2aFBRdZz011UpnN0p20SXpl_rsH0zOC4MFT5fC8T6XgLYq3nF1xxpoPkQtedpSJkjLeyZqKZ8WGt3VJ61LK58WGdbykDW-bl8WrGB8ZE23Vik3x6y74g_MxWUWeYFyQeEOUnwbrrDsQNeapYCQGVPIhXhLe7uju857cbe_pABE1sS6hizYdL8mTH5cJU8gyg5CWgDkBThONOJMRIZysc0BtV1_OkhmSRZci-WnTA9nud9_otCRI2TwuGQaNzisIyjo_AVmcxnDwqyZBOODKpQcMMFuMHwkQFXyMNCpwDsNpecJp9iEfkQ-0Oq_zjsS06OPr4oWBMeKbP_Oi-L7b3l_f0Nuv-y_Xn26pElIm2ineKYYVVrpqy7qqsevM0ADTRipT6wFF13QVw1aXTNQGuRyM5t2Q3yAaIy-K92fvHPyPBWPqJxsVjiM49EvsJat4KWTFREbf_YM--iW4_LtMtRVnUvIqU-JMnY4NaPo52AnCseesXwvRnwvR50L0p0L0q1qeQzHD7oDhr_o_qd_UM78a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085103315</pqid></control><display><type>article</type><title>Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study</title><source>Springer Nature</source><creator>Lue, Kun-Han ; Chen, Yu-Hung ; Chu, Sung-Chao ; Lin, Chih-Bin ; Wang, Tso-Fu ; Liu, Shu-Hsin</creator><creatorcontrib>Lue, Kun-Han ; Chen, Yu-Hung ; Chu, Sung-Chao ; Lin, Chih-Bin ; Wang, Tso-Fu ; Liu, Shu-Hsin</creatorcontrib><description>Objective To investigate the prognostic value of 18 F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. Methods We retrospectively analyzed the pre-treatment 18 F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog ( n  = 166) and digital ( n  = 51) PET cohorts. 18 F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. Results In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV max , metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p  &lt; 0.001) and digital PET cohorts (HR = 1.284, p  = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p  &lt; 0.001, c-index = 0.708 and HR = 1.256, p  = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). Conclusions Combining 18 F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.</description><identifier>ISSN: 0914-7187</identifier><identifier>ISSN: 1864-6433</identifier><identifier>EISSN: 1864-6433</identifier><identifier>DOI: 10.1007/s12149-024-01936-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Adenocarcinoma ; Cancer ; Deep learning ; Epidermal growth factor receptors ; Growth factors ; Imaging ; Independent variables ; Kinases ; Lung cancer ; Lungs ; Medicine ; Medicine &amp; Public Health ; Nuclear Medicine ; Original Article ; Patients ; Positron emission ; Positron emission tomography ; Prediction models ; Predictions ; Radiology ; Scanners ; Survival ; Tumors ; Tyrosine ; Tyrosine kinase inhibitors</subject><ispartof>Annals of nuclear medicine, 2024-08, Vol.38 (8), p.647-658</ispartof><rights>The Author(s), under exclusive licence to The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-9c19c0e5e5d584656e99fb7a0df3cf6dbe297950e8d4026fe13bfd19b26fa27f3</cites><orcidid>0000-0002-9227-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lue, Kun-Han</creatorcontrib><creatorcontrib>Chen, Yu-Hung</creatorcontrib><creatorcontrib>Chu, Sung-Chao</creatorcontrib><creatorcontrib>Lin, Chih-Bin</creatorcontrib><creatorcontrib>Wang, Tso-Fu</creatorcontrib><creatorcontrib>Liu, Shu-Hsin</creatorcontrib><title>Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study</title><title>Annals of nuclear medicine</title><addtitle>Ann Nucl Med</addtitle><description>Objective To investigate the prognostic value of 18 F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. Methods We retrospectively analyzed the pre-treatment 18 F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog ( n  = 166) and digital ( n  = 51) PET cohorts. 18 F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. Results In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV max , metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p  &lt; 0.001) and digital PET cohorts (HR = 1.284, p  = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p  &lt; 0.001, c-index = 0.708 and HR = 1.256, p  = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). Conclusions Combining 18 F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.</description><subject>Adenocarcinoma</subject><subject>Cancer</subject><subject>Deep learning</subject><subject>Epidermal growth factor receptors</subject><subject>Growth factors</subject><subject>Imaging</subject><subject>Independent variables</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lungs</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nuclear Medicine</subject><subject>Original Article</subject><subject>Patients</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Radiology</subject><subject>Scanners</subject><subject>Survival</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Tyrosine kinase inhibitors</subject><issn>0914-7187</issn><issn>1864-6433</issn><issn>1864-6433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kk2LFDEQhhtRcFz9A54CXjxs1nz0pzdZZ2aFBRdZz011UpnN0p20SXpl_rsH0zOC4MFT5fC8T6XgLYq3nF1xxpoPkQtedpSJkjLeyZqKZ8WGt3VJ61LK58WGdbykDW-bl8WrGB8ZE23Vik3x6y74g_MxWUWeYFyQeEOUnwbrrDsQNeapYCQGVPIhXhLe7uju857cbe_pABE1sS6hizYdL8mTH5cJU8gyg5CWgDkBThONOJMRIZysc0BtV1_OkhmSRZci-WnTA9nud9_otCRI2TwuGQaNzisIyjo_AVmcxnDwqyZBOODKpQcMMFuMHwkQFXyMNCpwDsNpecJp9iEfkQ-0Oq_zjsS06OPr4oWBMeKbP_Oi-L7b3l_f0Nuv-y_Xn26pElIm2ineKYYVVrpqy7qqsevM0ADTRipT6wFF13QVw1aXTNQGuRyM5t2Q3yAaIy-K92fvHPyPBWPqJxsVjiM49EvsJat4KWTFREbf_YM--iW4_LtMtRVnUvIqU-JMnY4NaPo52AnCseesXwvRnwvR50L0p0L0q1qeQzHD7oDhr_o_qd_UM78a</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lue, Kun-Han</creator><creator>Chen, Yu-Hung</creator><creator>Chu, Sung-Chao</creator><creator>Lin, Chih-Bin</creator><creator>Wang, Tso-Fu</creator><creator>Liu, Shu-Hsin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9227-0731</orcidid></search><sort><creationdate>20240801</creationdate><title>Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study</title><author>Lue, Kun-Han ; Chen, Yu-Hung ; Chu, Sung-Chao ; Lin, Chih-Bin ; Wang, Tso-Fu ; Liu, Shu-Hsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-9c19c0e5e5d584656e99fb7a0df3cf6dbe297950e8d4026fe13bfd19b26fa27f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenocarcinoma</topic><topic>Cancer</topic><topic>Deep learning</topic><topic>Epidermal growth factor receptors</topic><topic>Growth factors</topic><topic>Imaging</topic><topic>Independent variables</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lungs</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nuclear Medicine</topic><topic>Original Article</topic><topic>Patients</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Radiology</topic><topic>Scanners</topic><topic>Survival</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Tyrosine kinase inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lue, Kun-Han</creatorcontrib><creatorcontrib>Chen, Yu-Hung</creatorcontrib><creatorcontrib>Chu, Sung-Chao</creatorcontrib><creatorcontrib>Lin, Chih-Bin</creatorcontrib><creatorcontrib>Wang, Tso-Fu</creatorcontrib><creatorcontrib>Liu, Shu-Hsin</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of nuclear medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lue, Kun-Han</au><au>Chen, Yu-Hung</au><au>Chu, Sung-Chao</au><au>Lin, Chih-Bin</au><au>Wang, Tso-Fu</au><au>Liu, Shu-Hsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study</atitle><jtitle>Annals of nuclear medicine</jtitle><stitle>Ann Nucl Med</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>38</volume><issue>8</issue><spage>647</spage><epage>658</epage><pages>647-658</pages><issn>0914-7187</issn><issn>1864-6433</issn><eissn>1864-6433</eissn><abstract>Objective To investigate the prognostic value of 18 F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. Methods We retrospectively analyzed the pre-treatment 18 F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog ( n  = 166) and digital ( n  = 51) PET cohorts. 18 F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. Results In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV max , metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p  &lt; 0.001) and digital PET cohorts (HR = 1.284, p  = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p  &lt; 0.001, c-index = 0.708 and HR = 1.256, p  = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). Conclusions Combining 18 F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s12149-024-01936-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9227-0731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0914-7187
ispartof Annals of nuclear medicine, 2024-08, Vol.38 (8), p.647-658
issn 0914-7187
1864-6433
1864-6433
language eng
recordid cdi_proquest_miscellaneous_3051423502
source Springer Nature
subjects Adenocarcinoma
Cancer
Deep learning
Epidermal growth factor receptors
Growth factors
Imaging
Independent variables
Kinases
Lung cancer
Lungs
Medicine
Medicine & Public Health
Nuclear Medicine
Original Article
Patients
Positron emission
Positron emission tomography
Prediction models
Predictions
Radiology
Scanners
Survival
Tumors
Tyrosine
Tyrosine kinase inhibitors
title Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20value%20of%20combining%20clinical%20factors,%2018F-FDG%20PET-based%20intensity,%20volumetric%20features,%20and%20deep%20learning%20predictor%20in%20patients%20with%20EGFR-mutated%20lung%20adenocarcinoma%20undergoing%20targeted%20therapies:%20a%20cross-scanner%20and%20temporal%20validation%20study&rft.jtitle=Annals%20of%20nuclear%20medicine&rft.au=Lue,%20Kun-Han&rft.date=2024-08-01&rft.volume=38&rft.issue=8&rft.spage=647&rft.epage=658&rft.pages=647-658&rft.issn=0914-7187&rft.eissn=1864-6433&rft_id=info:doi/10.1007/s12149-024-01936-2&rft_dat=%3Cproquest_cross%3E3051423502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-9c19c0e5e5d584656e99fb7a0df3cf6dbe297950e8d4026fe13bfd19b26fa27f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085103315&rft_id=info:pmid/&rfr_iscdi=true