Loading…

The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review

Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to dis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Pakistan Medical Association 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78
Main Authors: Ameen, Abdullah, Shaikh, Kulsoom, Khan, Anam, Vohra, Lubna Mushtaq
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page S78
container_issue 4 (Supple-4)
container_start_page S72
container_title Journal of the Pakistan Medical Association
container_volume 74
creator Ameen, Abdullah
Shaikh, Kulsoom
Khan, Anam
Vohra, Lubna Mushtaq
description Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.
doi_str_mv 10.47391/JPMA.AKU-9S-11
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051940632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051940632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3</originalsourceid><addsrcrecordid>eNpNkctuFDEQRS0EIiFhzS7ykk0nfvRzOYpICCQC5bG2qt3lGUdu92C7J5rf4gtxJwGxqpLq3FuluoR84uy0bGTHz779vFmdrr4_FN1dwfkbcsiYZEXXteLtf_0B-RDjI2Oirhh7Tw5k23BRcnFIft9vkA42agze-jW13rgZvUY6GTrsPYxWUz35FCCmAv0G8mygN7dXGaXgk9V2C2mRjpNDPTsINM592m8xLh59wKyketEFmjZhmtebXJFCSDamsF-opTfZCly2TeicXT8fUVCgHkLIG3ZIA-4sPh2TdwZcxI-v9Yg8XHy5P_9aXP-4vDpfXRdaVDwVZpADCF0ORpRmeRbUEvsGtIa2baDuWCU6how3fclbVqKsoNaM96atW2y0PCKfX3y3Yfo1Y0xqXP7kHHic5qgkq3hXslqKjJ69oDpMMQY0ahvsCGGvOFPPQaklKJWDUt2d4jwrTl7N537E4R__Nxn5Bz33k7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051940632</pqid></control><display><type>article</type><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</creator><creatorcontrib>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</creatorcontrib><description>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</description><identifier>ISSN: 0030-9982</identifier><identifier>EISSN: 0030-9982</identifier><identifier>DOI: 10.47391/JPMA.AKU-9S-11</identifier><identifier>PMID: 38712412</identifier><language>eng</language><publisher>Pakistan</publisher><subject>Artificial Intelligence ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Contrast Media ; Female ; Humans ; Machine Learning ; Magnetic Resonance Imaging - methods</subject><ispartof>Journal of the Pakistan Medical Association, 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38712412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameen, Abdullah</creatorcontrib><creatorcontrib>Shaikh, Kulsoom</creatorcontrib><creatorcontrib>Khan, Anam</creatorcontrib><creatorcontrib>Vohra, Lubna Mushtaq</creatorcontrib><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><title>Journal of the Pakistan Medical Association</title><addtitle>J Pak Med Assoc</addtitle><description>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</description><subject>Artificial Intelligence</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>0030-9982</issn><issn>0030-9982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkctuFDEQRS0EIiFhzS7ykk0nfvRzOYpICCQC5bG2qt3lGUdu92C7J5rf4gtxJwGxqpLq3FuluoR84uy0bGTHz779vFmdrr4_FN1dwfkbcsiYZEXXteLtf_0B-RDjI2Oirhh7Tw5k23BRcnFIft9vkA42agze-jW13rgZvUY6GTrsPYxWUz35FCCmAv0G8mygN7dXGaXgk9V2C2mRjpNDPTsINM592m8xLh59wKyketEFmjZhmtebXJFCSDamsF-opTfZCly2TeicXT8fUVCgHkLIG3ZIA-4sPh2TdwZcxI-v9Yg8XHy5P_9aXP-4vDpfXRdaVDwVZpADCF0ORpRmeRbUEvsGtIa2baDuWCU6how3fclbVqKsoNaM96atW2y0PCKfX3y3Yfo1Y0xqXP7kHHic5qgkq3hXslqKjJ69oDpMMQY0ahvsCGGvOFPPQaklKJWDUt2d4jwrTl7N537E4R__Nxn5Bz33k7A</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ameen, Abdullah</creator><creator>Shaikh, Kulsoom</creator><creator>Khan, Anam</creator><creator>Vohra, Lubna Mushtaq</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><author>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ameen, Abdullah</creatorcontrib><creatorcontrib>Shaikh, Kulsoom</creatorcontrib><creatorcontrib>Khan, Anam</creatorcontrib><creatorcontrib>Vohra, Lubna Mushtaq</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Pakistan Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameen, Abdullah</au><au>Shaikh, Kulsoom</au><au>Khan, Anam</au><au>Vohra, Lubna Mushtaq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</atitle><jtitle>Journal of the Pakistan Medical Association</jtitle><addtitle>J Pak Med Assoc</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>74</volume><issue>4 (Supple-4)</issue><spage>S72</spage><epage>S78</epage><pages>S72-S78</pages><issn>0030-9982</issn><eissn>0030-9982</eissn><abstract>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</abstract><cop>Pakistan</cop><pmid>38712412</pmid><doi>10.47391/JPMA.AKU-9S-11</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-9982
ispartof Journal of the Pakistan Medical Association, 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78
issn 0030-9982
0030-9982
language eng
recordid cdi_proquest_miscellaneous_3051940632
source Open Access: DOAJ - Directory of Open Access Journals
subjects Artificial Intelligence
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Contrast Media
Female
Humans
Machine Learning
Magnetic Resonance Imaging - methods
title The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20discerning%20influence%20of%20dynamic%20contrast-enhanced%20MRI%20in%20anticipating%20molecular%20subtypes%20of%20breast%20cancer%20through%20the%20artistry%20of%20artificial%20intelligence%20-%20a%20narrative%20review&rft.jtitle=Journal%20of%20the%20Pakistan%20Medical%20Association&rft.au=Ameen,%20Abdullah&rft.date=2024-04-01&rft.volume=74&rft.issue=4%20(Supple-4)&rft.spage=S72&rft.epage=S78&rft.pages=S72-S78&rft.issn=0030-9982&rft.eissn=0030-9982&rft_id=info:doi/10.47391/JPMA.AKU-9S-11&rft_dat=%3Cproquest_cross%3E3051940632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051940632&rft_id=info:pmid/38712412&rfr_iscdi=true