Loading…
The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review
Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to dis...
Saved in:
Published in: | Journal of the Pakistan Medical Association 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | S78 |
container_issue | 4 (Supple-4) |
container_start_page | S72 |
container_title | Journal of the Pakistan Medical Association |
container_volume | 74 |
creator | Ameen, Abdullah Shaikh, Kulsoom Khan, Anam Vohra, Lubna Mushtaq |
description | Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively. |
doi_str_mv | 10.47391/JPMA.AKU-9S-11 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051940632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051940632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3</originalsourceid><addsrcrecordid>eNpNkctuFDEQRS0EIiFhzS7ykk0nfvRzOYpICCQC5bG2qt3lGUdu92C7J5rf4gtxJwGxqpLq3FuluoR84uy0bGTHz779vFmdrr4_FN1dwfkbcsiYZEXXteLtf_0B-RDjI2Oirhh7Tw5k23BRcnFIft9vkA42agze-jW13rgZvUY6GTrsPYxWUz35FCCmAv0G8mygN7dXGaXgk9V2C2mRjpNDPTsINM592m8xLh59wKyketEFmjZhmtebXJFCSDamsF-opTfZCly2TeicXT8fUVCgHkLIG3ZIA-4sPh2TdwZcxI-v9Yg8XHy5P_9aXP-4vDpfXRdaVDwVZpADCF0ORpRmeRbUEvsGtIa2baDuWCU6how3fclbVqKsoNaM96atW2y0PCKfX3y3Yfo1Y0xqXP7kHHic5qgkq3hXslqKjJ69oDpMMQY0ahvsCGGvOFPPQaklKJWDUt2d4jwrTl7N537E4R__Nxn5Bz33k7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051940632</pqid></control><display><type>article</type><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</creator><creatorcontrib>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</creatorcontrib><description>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</description><identifier>ISSN: 0030-9982</identifier><identifier>EISSN: 0030-9982</identifier><identifier>DOI: 10.47391/JPMA.AKU-9S-11</identifier><identifier>PMID: 38712412</identifier><language>eng</language><publisher>Pakistan</publisher><subject>Artificial Intelligence ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Contrast Media ; Female ; Humans ; Machine Learning ; Magnetic Resonance Imaging - methods</subject><ispartof>Journal of the Pakistan Medical Association, 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38712412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameen, Abdullah</creatorcontrib><creatorcontrib>Shaikh, Kulsoom</creatorcontrib><creatorcontrib>Khan, Anam</creatorcontrib><creatorcontrib>Vohra, Lubna Mushtaq</creatorcontrib><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><title>Journal of the Pakistan Medical Association</title><addtitle>J Pak Med Assoc</addtitle><description>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</description><subject>Artificial Intelligence</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>0030-9982</issn><issn>0030-9982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkctuFDEQRS0EIiFhzS7ykk0nfvRzOYpICCQC5bG2qt3lGUdu92C7J5rf4gtxJwGxqpLq3FuluoR84uy0bGTHz779vFmdrr4_FN1dwfkbcsiYZEXXteLtf_0B-RDjI2Oirhh7Tw5k23BRcnFIft9vkA42agze-jW13rgZvUY6GTrsPYxWUz35FCCmAv0G8mygN7dXGaXgk9V2C2mRjpNDPTsINM592m8xLh59wKyketEFmjZhmtebXJFCSDamsF-opTfZCly2TeicXT8fUVCgHkLIG3ZIA-4sPh2TdwZcxI-v9Yg8XHy5P_9aXP-4vDpfXRdaVDwVZpADCF0ORpRmeRbUEvsGtIa2baDuWCU6how3fclbVqKsoNaM96atW2y0PCKfX3y3Yfo1Y0xqXP7kHHic5qgkq3hXslqKjJ69oDpMMQY0ahvsCGGvOFPPQaklKJWDUt2d4jwrTl7N537E4R__Nxn5Bz33k7A</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ameen, Abdullah</creator><creator>Shaikh, Kulsoom</creator><creator>Khan, Anam</creator><creator>Vohra, Lubna Mushtaq</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</title><author>Ameen, Abdullah ; Shaikh, Kulsoom ; Khan, Anam ; Vohra, Lubna Mushtaq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ameen, Abdullah</creatorcontrib><creatorcontrib>Shaikh, Kulsoom</creatorcontrib><creatorcontrib>Khan, Anam</creatorcontrib><creatorcontrib>Vohra, Lubna Mushtaq</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Pakistan Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameen, Abdullah</au><au>Shaikh, Kulsoom</au><au>Khan, Anam</au><au>Vohra, Lubna Mushtaq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review</atitle><jtitle>Journal of the Pakistan Medical Association</jtitle><addtitle>J Pak Med Assoc</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>74</volume><issue>4 (Supple-4)</issue><spage>S72</spage><epage>S78</epage><pages>S72-S78</pages><issn>0030-9982</issn><eissn>0030-9982</eissn><abstract>Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.</abstract><cop>Pakistan</cop><pmid>38712412</pmid><doi>10.47391/JPMA.AKU-9S-11</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-9982 |
ispartof | Journal of the Pakistan Medical Association, 2024-04, Vol.74 (4 (Supple-4)), p.S72-S78 |
issn | 0030-9982 0030-9982 |
language | eng |
recordid | cdi_proquest_miscellaneous_3051940632 |
source | Open Access: DOAJ - Directory of Open Access Journals |
subjects | Artificial Intelligence Breast Neoplasms - diagnostic imaging Breast Neoplasms - genetics Breast Neoplasms - pathology Contrast Media Female Humans Machine Learning Magnetic Resonance Imaging - methods |
title | The discerning influence of dynamic contrast-enhanced MRI in anticipating molecular subtypes of breast cancer through the artistry of artificial intelligence - a narrative review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20discerning%20influence%20of%20dynamic%20contrast-enhanced%20MRI%20in%20anticipating%20molecular%20subtypes%20of%20breast%20cancer%20through%20the%20artistry%20of%20artificial%20intelligence%20-%20a%20narrative%20review&rft.jtitle=Journal%20of%20the%20Pakistan%20Medical%20Association&rft.au=Ameen,%20Abdullah&rft.date=2024-04-01&rft.volume=74&rft.issue=4%20(Supple-4)&rft.spage=S72&rft.epage=S78&rft.pages=S72-S78&rft.issn=0030-9982&rft.eissn=0030-9982&rft_id=info:doi/10.47391/JPMA.AKU-9S-11&rft_dat=%3Cproquest_cross%3E3051940632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-fd3da2c4df24f4739a63eb7acca887a6905290e017b41804e35a6c01bf868e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051940632&rft_id=info:pmid/38712412&rfr_iscdi=true |