Loading…
Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofi...
Saved in:
Published in: | Polymers 2024-05, Vol.16 (9), p.1180 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1180 |
container_title | Polymers |
container_volume | 16 |
creator | Kwon, Yongbum Bui-Vinh, Dai Lee, Seung-Hwan Baek, So Hyun Lee, Songhui Yun, Jeungjai Baek, Minwoo Lee, Hyun-Woo Park, Jaebeom Kim, Miri Yoo, Minsang Kim, Bum Sung Song, Yoseb Lee, Handol Lee, Do-Hyun Jeong, Da-Woon |
description | Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of
were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and
outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials. |
doi_str_mv | 10.3390/polym16091180 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053969329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793573297</galeid><sourcerecordid>A793573297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3</originalsourceid><addsrcrecordid>eNpdkc9PFTEQxxsjEQIcvZomXrwstNv90R4JPJEEwUQ5b9q-6bNkt13bLuTFf96Bh0ZtD98m85mZb2cIecvZiRCKnc5x3E68Y4pzyV6Rg5r1ompEx17_9d4nxznfMzxN23W8f0P2hexF3TXqgPxcPeg5Jl18DNVF8g8Q6CpA2mzpJaA-B-hd9mFDNYZGsCXFPC-BfsHm2qbtGIMvyY9Ab3SIzhtI9LMu9NGX7_TCOwcJQqFflxkbPanJBetCPiJ7To8Zjl_0kNx9XH07_1Rd315enZ9dVxbdl6qtG3BaSsMF18Y1tZZONC1IhcqVaplrOrUGXsveQC-ZqzUYa7lpetFpIw7Jh13dOcUfC-QyTD5bGEcdIC55EKwVqlOiVoi-_w-9j0sK6O6Z4m0teYvUyY7a6BEGH1zED1m8a5i8jQEcTmM465Vocc6qx4Rql2BxdjmBG-bkJ522A2fD0yaHfzaJ_LsXG4uZYP2H_r038QucOJt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053152815</pqid></control><display><type>article</type><title>Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Kwon, Yongbum ; Bui-Vinh, Dai ; Lee, Seung-Hwan ; Baek, So Hyun ; Lee, Songhui ; Yun, Jeungjai ; Baek, Minwoo ; Lee, Hyun-Woo ; Park, Jaebeom ; Kim, Miri ; Yoo, Minsang ; Kim, Bum Sung ; Song, Yoseb ; Lee, Handol ; Lee, Do-Hyun ; Jeong, Da-Woon</creator><creatorcontrib>Kwon, Yongbum ; Bui-Vinh, Dai ; Lee, Seung-Hwan ; Baek, So Hyun ; Lee, Songhui ; Yun, Jeungjai ; Baek, Minwoo ; Lee, Hyun-Woo ; Park, Jaebeom ; Kim, Miri ; Yoo, Minsang ; Kim, Bum Sung ; Song, Yoseb ; Lee, Handol ; Lee, Do-Hyun ; Jeong, Da-Woon</creatorcontrib><description>Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of
were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and
outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16091180</identifier><identifier>PMID: 38732649</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative energy sources ; Aluminum ; Analysis ; Carbon black ; Clean energy ; Composite materials ; Copper ; Dip coatings ; Electric power production ; Electric properties ; Electricity generation ; Energy harvesting ; Evaporation ; Fiberglass ; Humidity ; Identification and classification ; Immersion coating ; Nanofibers ; Nanoparticles ; Polyacrylonitrile ; Porous materials ; Renewable resources ; Substrates ; Wind power</subject><ispartof>Polymers, 2024-05, Vol.16 (9), p.1180</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3</citedby><cites>FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3</cites><orcidid>0000-0002-4356-3108 ; 0000-0002-0676-0583 ; 0000-0002-6250-0233 ; 0000-0003-1320-5032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053152815/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053152815?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38732649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Yongbum</creatorcontrib><creatorcontrib>Bui-Vinh, Dai</creatorcontrib><creatorcontrib>Lee, Seung-Hwan</creatorcontrib><creatorcontrib>Baek, So Hyun</creatorcontrib><creatorcontrib>Lee, Songhui</creatorcontrib><creatorcontrib>Yun, Jeungjai</creatorcontrib><creatorcontrib>Baek, Minwoo</creatorcontrib><creatorcontrib>Lee, Hyun-Woo</creatorcontrib><creatorcontrib>Park, Jaebeom</creatorcontrib><creatorcontrib>Kim, Miri</creatorcontrib><creatorcontrib>Yoo, Minsang</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Handol</creatorcontrib><creatorcontrib>Lee, Do-Hyun</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><title>Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of
were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and
outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.</description><subject>Alternative energy sources</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Carbon black</subject><subject>Clean energy</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Dip coatings</subject><subject>Electric power production</subject><subject>Electric properties</subject><subject>Electricity generation</subject><subject>Energy harvesting</subject><subject>Evaporation</subject><subject>Fiberglass</subject><subject>Humidity</subject><subject>Identification and classification</subject><subject>Immersion coating</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Polyacrylonitrile</subject><subject>Porous materials</subject><subject>Renewable resources</subject><subject>Substrates</subject><subject>Wind power</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc9PFTEQxxsjEQIcvZomXrwstNv90R4JPJEEwUQ5b9q-6bNkt13bLuTFf96Bh0ZtD98m85mZb2cIecvZiRCKnc5x3E68Y4pzyV6Rg5r1ompEx17_9d4nxznfMzxN23W8f0P2hexF3TXqgPxcPeg5Jl18DNVF8g8Q6CpA2mzpJaA-B-hd9mFDNYZGsCXFPC-BfsHm2qbtGIMvyY9Ab3SIzhtI9LMu9NGX7_TCOwcJQqFflxkbPanJBetCPiJ7To8Zjl_0kNx9XH07_1Rd315enZ9dVxbdl6qtG3BaSsMF18Y1tZZONC1IhcqVaplrOrUGXsveQC-ZqzUYa7lpetFpIw7Jh13dOcUfC-QyTD5bGEcdIC55EKwVqlOiVoi-_w-9j0sK6O6Z4m0teYvUyY7a6BEGH1zED1m8a5i8jQEcTmM465Vocc6qx4Rql2BxdjmBG-bkJ522A2fD0yaHfzaJ_LsXG4uZYP2H_r038QucOJt6</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kwon, Yongbum</creator><creator>Bui-Vinh, Dai</creator><creator>Lee, Seung-Hwan</creator><creator>Baek, So Hyun</creator><creator>Lee, Songhui</creator><creator>Yun, Jeungjai</creator><creator>Baek, Minwoo</creator><creator>Lee, Hyun-Woo</creator><creator>Park, Jaebeom</creator><creator>Kim, Miri</creator><creator>Yoo, Minsang</creator><creator>Kim, Bum Sung</creator><creator>Song, Yoseb</creator><creator>Lee, Handol</creator><creator>Lee, Do-Hyun</creator><creator>Jeong, Da-Woon</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4356-3108</orcidid><orcidid>https://orcid.org/0000-0002-0676-0583</orcidid><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid><orcidid>https://orcid.org/0000-0003-1320-5032</orcidid></search><sort><creationdate>20240501</creationdate><title>Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates</title><author>Kwon, Yongbum ; Bui-Vinh, Dai ; Lee, Seung-Hwan ; Baek, So Hyun ; Lee, Songhui ; Yun, Jeungjai ; Baek, Minwoo ; Lee, Hyun-Woo ; Park, Jaebeom ; Kim, Miri ; Yoo, Minsang ; Kim, Bum Sung ; Song, Yoseb ; Lee, Handol ; Lee, Do-Hyun ; Jeong, Da-Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Carbon black</topic><topic>Clean energy</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Dip coatings</topic><topic>Electric power production</topic><topic>Electric properties</topic><topic>Electricity generation</topic><topic>Energy harvesting</topic><topic>Evaporation</topic><topic>Fiberglass</topic><topic>Humidity</topic><topic>Identification and classification</topic><topic>Immersion coating</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Polyacrylonitrile</topic><topic>Porous materials</topic><topic>Renewable resources</topic><topic>Substrates</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Yongbum</creatorcontrib><creatorcontrib>Bui-Vinh, Dai</creatorcontrib><creatorcontrib>Lee, Seung-Hwan</creatorcontrib><creatorcontrib>Baek, So Hyun</creatorcontrib><creatorcontrib>Lee, Songhui</creatorcontrib><creatorcontrib>Yun, Jeungjai</creatorcontrib><creatorcontrib>Baek, Minwoo</creatorcontrib><creatorcontrib>Lee, Hyun-Woo</creatorcontrib><creatorcontrib>Park, Jaebeom</creatorcontrib><creatorcontrib>Kim, Miri</creatorcontrib><creatorcontrib>Yoo, Minsang</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Handol</creatorcontrib><creatorcontrib>Lee, Do-Hyun</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Yongbum</au><au>Bui-Vinh, Dai</au><au>Lee, Seung-Hwan</au><au>Baek, So Hyun</au><au>Lee, Songhui</au><au>Yun, Jeungjai</au><au>Baek, Minwoo</au><au>Lee, Hyun-Woo</au><au>Park, Jaebeom</au><au>Kim, Miri</au><au>Yoo, Minsang</au><au>Kim, Bum Sung</au><au>Song, Yoseb</au><au>Lee, Handol</au><au>Lee, Do-Hyun</au><au>Jeong, Da-Woon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>1180</spage><pages>1180-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of
were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and
outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38732649</pmid><doi>10.3390/polym16091180</doi><orcidid>https://orcid.org/0000-0002-4356-3108</orcidid><orcidid>https://orcid.org/0000-0002-0676-0583</orcidid><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid><orcidid>https://orcid.org/0000-0003-1320-5032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-05, Vol.16 (9), p.1180 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053969329 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Alternative energy sources Aluminum Analysis Carbon black Clean energy Composite materials Copper Dip coatings Electric power production Electric properties Electricity generation Energy harvesting Evaporation Fiberglass Humidity Identification and classification Immersion coating Nanofibers Nanoparticles Polyacrylonitrile Porous materials Renewable resources Substrates Wind power |
title | Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation-Driven%20Energy%20Generation%20Using%20an%20Electrospun%20Polyacrylonitrile%20Nanofiber%20Mat%20with%20Different%20Support%20Substrates&rft.jtitle=Polymers&rft.au=Kwon,%20Yongbum&rft.date=2024-05-01&rft.volume=16&rft.issue=9&rft.spage=1180&rft.pages=1180-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16091180&rft_dat=%3Cgale_proqu%3EA793573297%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-524efa88b131abf42a8f345e898f319950f469de1287be780f2aebcc1b4736ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053152815&rft_id=info:pmid/38732649&rft_galeid=A793573297&rfr_iscdi=true |