Loading…

Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing

The spreading behavior of particles has a significant impact on the processing quality of additive manufacturing. Compared with spherical metal material, polymer particles are usually non-spherical in shape. However, the effects of particle shape and underlying mechanisms remain unclear. Here, the s...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-05, Vol.16 (9), p.1179
Main Authors: Zhang, Tengfang, Chen, Dan, Yang, Hui, Zhao, Wei, Wang, Yunming, Zhou, Huamin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spreading behavior of particles has a significant impact on the processing quality of additive manufacturing. Compared with spherical metal material, polymer particles are usually non-spherical in shape. However, the effects of particle shape and underlying mechanisms remain unclear. Here, the spreading process of particles with reconstructed shapes (non-spherical particles decomposed into several spherical shapes by stereo-lithography models) are simulated by integrating spherical particles with the discrete element method. The results show that more cavities form in the spreading beds of particles with reconstructed shapes than those of spheres with blade spreading. Correspondingly, particles with reconstructed shapes have lower packing densities, leading to more uniform packing patterns. Slow propagation speeds of velocity and angular velocity lead to "right-upwards" turning boundaries for particles with reconstructed shapes and "right-downwards" turning boundaries for spherical particles. Moreover, as the blade velocity increases, the packing density decreases. Our calculation results verify each other and are in good agreement with the experiment, providing more details of the behavior of non-spherical particles before additive manufacturing. The comprehensive comparison between polymer non-spherical particles and spherical particles helps develop a reasonable map for the appropriate choice of operating parameters in real processes.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16091179