Loading…

Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn–Ce–NCNTs). The mo...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2024-05, Vol.40 (20), p.10561-10570
Main Authors: Xiao, Zhourong, Hou, Fang, Zhang, Xiangwen, Pan, Lun, Zou, Ji-Jun, Li, Guozhu
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a297t-74e59cc969db171bb5a5c4e25d019f52687c5dcefbb7829d0ba1a7d331576ba33
container_end_page 10570
container_issue 20
container_start_page 10561
container_title Langmuir
container_volume 40
creator Xiao, Zhourong
Hou, Fang
Zhang, Xiangwen
Pan, Lun
Zou, Ji-Jun
Li, Guozhu
description The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn–Ce–NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn–Ce–NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn–Ce–NCNTs is 68.1 mW cm–2 at the current density of 138.9 mA cm–2 for a Zn–air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm–2 at 106.1 mA cm–2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are −0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (−0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only −0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.
doi_str_mv 10.1021/acs.langmuir.4c00277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053970597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053970597</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-74e59cc969db171bb5a5c4e25d019f52687c5dcefbb7829d0ba1a7d331576ba33</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwA4SyZJPinziOl6gtFKlQiZ91ZDtOm6q1g51IdMcVuCInwaEtS1Z-9rw3nvkAuERwiCBGN0L54VqYxaat3DBREGLGjkAfUQxjmmF2DPqQJSRmSUp64Mz7FYSQk4Sfgh7JGM7SNO0DM60Wy_U2Gle-1s7rIno08djWQYy0q0T00ta1dU24WxM9fX9-7YvCye5BGNu0UvuotC6amKUwKlTnH9uFNtGzLlrVVLZT4lecg5NSrL2-2J8D8HY3eR1N49n8_mF0O4sF5qwJM2vKleIpLyRiSEoqqEo0pgVEvKQ4zZiihdKllCzDvIBSIMEKQhBlqRSEDMD1rm_t7HurfZNvKq_0OgDTtvU5gZRwBilnwZrsrMpZ750u89pVG-G2OYJ5RzoPpPMD6XxPOsSu9j-0cqOLv9ABbTDAnaGLr2zrTFj4_54_3-yPtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053970597</pqid></control><display><type>article</type><title>Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xiao, Zhourong ; Hou, Fang ; Zhang, Xiangwen ; Pan, Lun ; Zou, Ji-Jun ; Li, Guozhu</creator><creatorcontrib>Xiao, Zhourong ; Hou, Fang ; Zhang, Xiangwen ; Pan, Lun ; Zou, Ji-Jun ; Li, Guozhu</creatorcontrib><description>The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn–Ce–NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn–Ce–NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn–Ce–NCNTs is 68.1 mW cm–2 at the current density of 138.9 mA cm–2 for a Zn–air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm–2 at 106.1 mA cm–2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are −0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (−0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only −0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c00277</identifier><identifier>PMID: 38728666</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2024-05, Vol.40 (20), p.10561-10570</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-74e59cc969db171bb5a5c4e25d019f52687c5dcefbb7829d0ba1a7d331576ba33</cites><orcidid>0000-0002-3083-4693 ; 0000-0002-5088-9990 ; 0000-0002-9126-1251 ; 0000-0003-1329-0548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38728666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Hou, Fang</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><title>Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn–Ce–NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn–Ce–NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn–Ce–NCNTs is 68.1 mW cm–2 at the current density of 138.9 mA cm–2 for a Zn–air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm–2 at 106.1 mA cm–2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are −0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (−0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only −0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EoqVwA4SyZJPinziOl6gtFKlQiZ91ZDtOm6q1g51IdMcVuCInwaEtS1Z-9rw3nvkAuERwiCBGN0L54VqYxaat3DBREGLGjkAfUQxjmmF2DPqQJSRmSUp64Mz7FYSQk4Sfgh7JGM7SNO0DM60Wy_U2Gle-1s7rIno08djWQYy0q0T00ta1dU24WxM9fX9-7YvCye5BGNu0UvuotC6amKUwKlTnH9uFNtGzLlrVVLZT4lecg5NSrL2-2J8D8HY3eR1N49n8_mF0O4sF5qwJM2vKleIpLyRiSEoqqEo0pgVEvKQ4zZiihdKllCzDvIBSIMEKQhBlqRSEDMD1rm_t7HurfZNvKq_0OgDTtvU5gZRwBilnwZrsrMpZ750u89pVG-G2OYJ5RzoPpPMD6XxPOsSu9j-0cqOLv9ABbTDAnaGLr2zrTFj4_54_3-yPtQ</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Xiao, Zhourong</creator><creator>Hou, Fang</creator><creator>Zhang, Xiangwen</creator><creator>Pan, Lun</creator><creator>Zou, Ji-Jun</creator><creator>Li, Guozhu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid><orcidid>https://orcid.org/0000-0002-5088-9990</orcidid><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid></search><sort><creationdate>20240521</creationdate><title>Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction</title><author>Xiao, Zhourong ; Hou, Fang ; Zhang, Xiangwen ; Pan, Lun ; Zou, Ji-Jun ; Li, Guozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-74e59cc969db171bb5a5c4e25d019f52687c5dcefbb7829d0ba1a7d331576ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Hou, Fang</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Zhourong</au><au>Hou, Fang</au><au>Zhang, Xiangwen</au><au>Pan, Lun</au><au>Zou, Ji-Jun</au><au>Li, Guozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>40</volume><issue>20</issue><spage>10561</spage><epage>10570</epage><pages>10561-10570</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn–Ce–NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn–Ce–NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn–Ce–NCNTs is 68.1 mW cm–2 at the current density of 138.9 mA cm–2 for a Zn–air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm–2 at 106.1 mA cm–2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are −0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (−0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only −0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38728666</pmid><doi>10.1021/acs.langmuir.4c00277</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid><orcidid>https://orcid.org/0000-0002-5088-9990</orcidid><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-05, Vol.40 (20), p.10561-10570
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3053970597
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Highly Dispersed Mn-Doped Ceria Supported on N‑Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Dispersed%20Mn-Doped%20Ceria%20Supported%20on%20N%E2%80%91Doped%20Carbon%20Nanotubes%20for%20Enhanced%20Oxygen%20Reduction%20Reaction&rft.jtitle=Langmuir&rft.au=Xiao,%20Zhourong&rft.date=2024-05-21&rft.volume=40&rft.issue=20&rft.spage=10561&rft.epage=10570&rft.pages=10561-10570&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c00277&rft_dat=%3Cproquest_cross%3E3053970597%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a297t-74e59cc969db171bb5a5c4e25d019f52687c5dcefbb7829d0ba1a7d331576ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053970597&rft_id=info:pmid/38728666&rfr_iscdi=true