Loading…
Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy
: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the...
Saved in:
Published in: | Journal of clinical medicine 2024-05, Vol.13 (9), p.2709 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473 |
container_end_page | |
container_issue | 9 |
container_start_page | 2709 |
container_title | Journal of clinical medicine |
container_volume | 13 |
creator | Kazimierczak, Wojciech Wajer, Róża Wajer, Adrian Kiian, Veronica Kloska, Anna Kazimierczak, Natalia Janiszewska-Olszowska, Joanna Serafin, Zbigniew |
description | : Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images.
: The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score.
: The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images.
: The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images. |
doi_str_mv | 10.3390/jcm13092709 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053977811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793565262</galeid><sourcerecordid>A793565262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</originalsourceid><addsrcrecordid>eNptkc-L1DAcxYMo7rLuybsEPChI1yTftmmO3fHXwICLrOeSpt_UDG0yJu1h_nuzu6OsYnLIl_B5j5c8Ql5ydgWg2Pu9mTkwJSRTT8i5YFIWDBp4-mg-I5cp7VleTVMKLp-TM2gkcAHynJgbjE4fnNET3WFywSfqPL3RPkQ9O0O_6cGFMerDjyPVfqCb680t3c56dH4s2pQwpRn9QoOl7fZNoh-cHn1IS5a2xqxRm-ML8szqKeHl6bwg3z99vN18KXZfP2837a4wOdZSoG44ykGosuG8B9Ssr4VobK9wkNbWYE0ljC0VU8DEoFFKU4uyFwYGUKWEC_L2wfcQw88V09LNLhmcJu0xrKkDVoGSMrtn9PU_6D6s0ed09xQvq-re8ESNesLOeRuW_J47066VCqq6ErXI1NV_qLwHzB8YPFqX7_8SvHsQmBhSimi7Q3SzjseOs-6u1e5Rq5l-dYq69jMOf9jfHcIv8BKZqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053145547</pqid></control><display><type>article</type><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</creator><creatorcontrib>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</creatorcontrib><description>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images.
: The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score.
: The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images.
: The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm13092709</identifier><identifier>PMID: 38731237</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Comparative analysis ; CT imaging ; Diagnosis ; Diagnostic imaging ; Medical research ; Medicine, Experimental ; Patients ; Teeth ; Tooth diseases</subject><ispartof>Journal of clinical medicine, 2024-05, Vol.13 (9), p.2709</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</citedby><cites>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</cites><orcidid>0000-0002-8372-0550 ; 0000-0003-4374-2568 ; 0000-0002-4307-6852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053145547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053145547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38731237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Wajer, Róża</creatorcontrib><creatorcontrib>Wajer, Adrian</creatorcontrib><creatorcontrib>Kiian, Veronica</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images.
: The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score.
: The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images.
: The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Comparative analysis</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>Teeth</subject><subject>Tooth diseases</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc-L1DAcxYMo7rLuybsEPChI1yTftmmO3fHXwICLrOeSpt_UDG0yJu1h_nuzu6OsYnLIl_B5j5c8Ql5ydgWg2Pu9mTkwJSRTT8i5YFIWDBp4-mg-I5cp7VleTVMKLp-TM2gkcAHynJgbjE4fnNET3WFywSfqPL3RPkQ9O0O_6cGFMerDjyPVfqCb680t3c56dH4s2pQwpRn9QoOl7fZNoh-cHn1IS5a2xqxRm-ML8szqKeHl6bwg3z99vN18KXZfP2837a4wOdZSoG44ykGosuG8B9Ssr4VobK9wkNbWYE0ljC0VU8DEoFFKU4uyFwYGUKWEC_L2wfcQw88V09LNLhmcJu0xrKkDVoGSMrtn9PU_6D6s0ed09xQvq-re8ESNesLOeRuW_J47066VCqq6ErXI1NV_qLwHzB8YPFqX7_8SvHsQmBhSimi7Q3SzjseOs-6u1e5Rq5l-dYq69jMOf9jfHcIv8BKZqA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kazimierczak, Wojciech</creator><creator>Wajer, Róża</creator><creator>Wajer, Adrian</creator><creator>Kiian, Veronica</creator><creator>Kloska, Anna</creator><creator>Kazimierczak, Natalia</creator><creator>Janiszewska-Olszowska, Joanna</creator><creator>Serafin, Zbigniew</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid><orcidid>https://orcid.org/0000-0003-4374-2568</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid></search><sort><creationdate>20240501</creationdate><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><author>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Comparative analysis</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>Teeth</topic><topic>Tooth diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Wajer, Róża</creatorcontrib><creatorcontrib>Wajer, Adrian</creatorcontrib><creatorcontrib>Kiian, Veronica</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazimierczak, Wojciech</au><au>Wajer, Róża</au><au>Wajer, Adrian</au><au>Kiian, Veronica</au><au>Kloska, Anna</au><au>Kazimierczak, Natalia</au><au>Janiszewska-Olszowska, Joanna</au><au>Serafin, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>2709</spage><pages>2709-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images.
: The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score.
: The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images.
: The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38731237</pmid><doi>10.3390/jcm13092709</doi><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid><orcidid>https://orcid.org/0000-0003-4374-2568</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2024-05, Vol.13 (9), p.2709 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053977811 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Artificial intelligence Comparative analysis CT imaging Diagnosis Diagnostic imaging Medical research Medicine, Experimental Patients Teeth Tooth diseases |
title | Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periapical%20Lesions%20in%20Panoramic%20Radiography%20and%20CBCT%20Imaging-Assessment%20of%20AI's%20Diagnostic%20Accuracy&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Kazimierczak,%20Wojciech&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=2709&rft.pages=2709-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm13092709&rft_dat=%3Cgale_proqu%3EA793565262%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053145547&rft_id=info:pmid/38731237&rft_galeid=A793565262&rfr_iscdi=true |