Loading…

Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy

: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical medicine 2024-05, Vol.13 (9), p.2709
Main Authors: Kazimierczak, Wojciech, Wajer, Róża, Wajer, Adrian, Kiian, Veronica, Kloska, Anna, Kazimierczak, Natalia, Janiszewska-Olszowska, Joanna, Serafin, Zbigniew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473
cites cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473
container_end_page
container_issue 9
container_start_page 2709
container_title Journal of clinical medicine
container_volume 13
creator Kazimierczak, Wojciech
Wajer, Róża
Wajer, Adrian
Kiian, Veronica
Kloska, Anna
Kazimierczak, Natalia
Janiszewska-Olszowska, Joanna
Serafin, Zbigniew
description : Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images. : The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score. : The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images. : The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.
doi_str_mv 10.3390/jcm13092709
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053977811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793565262</galeid><sourcerecordid>A793565262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</originalsourceid><addsrcrecordid>eNptkc-L1DAcxYMo7rLuybsEPChI1yTftmmO3fHXwICLrOeSpt_UDG0yJu1h_nuzu6OsYnLIl_B5j5c8Ql5ydgWg2Pu9mTkwJSRTT8i5YFIWDBp4-mg-I5cp7VleTVMKLp-TM2gkcAHynJgbjE4fnNET3WFywSfqPL3RPkQ9O0O_6cGFMerDjyPVfqCb680t3c56dH4s2pQwpRn9QoOl7fZNoh-cHn1IS5a2xqxRm-ML8szqKeHl6bwg3z99vN18KXZfP2837a4wOdZSoG44ykGosuG8B9Ssr4VobK9wkNbWYE0ljC0VU8DEoFFKU4uyFwYGUKWEC_L2wfcQw88V09LNLhmcJu0xrKkDVoGSMrtn9PU_6D6s0ed09xQvq-re8ESNesLOeRuW_J47066VCqq6ErXI1NV_qLwHzB8YPFqX7_8SvHsQmBhSimi7Q3SzjseOs-6u1e5Rq5l-dYq69jMOf9jfHcIv8BKZqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053145547</pqid></control><display><type>article</type><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</creator><creatorcontrib>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</creatorcontrib><description>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images. : The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score. : The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images. : The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm13092709</identifier><identifier>PMID: 38731237</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Comparative analysis ; CT imaging ; Diagnosis ; Diagnostic imaging ; Medical research ; Medicine, Experimental ; Patients ; Teeth ; Tooth diseases</subject><ispartof>Journal of clinical medicine, 2024-05, Vol.13 (9), p.2709</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</citedby><cites>FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</cites><orcidid>0000-0002-8372-0550 ; 0000-0003-4374-2568 ; 0000-0002-4307-6852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053145547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053145547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38731237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Wajer, Róża</creatorcontrib><creatorcontrib>Wajer, Adrian</creatorcontrib><creatorcontrib>Kiian, Veronica</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images. : The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score. : The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images. : The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Comparative analysis</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>Teeth</subject><subject>Tooth diseases</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc-L1DAcxYMo7rLuybsEPChI1yTftmmO3fHXwICLrOeSpt_UDG0yJu1h_nuzu6OsYnLIl_B5j5c8Ql5ydgWg2Pu9mTkwJSRTT8i5YFIWDBp4-mg-I5cp7VleTVMKLp-TM2gkcAHynJgbjE4fnNET3WFywSfqPL3RPkQ9O0O_6cGFMerDjyPVfqCb680t3c56dH4s2pQwpRn9QoOl7fZNoh-cHn1IS5a2xqxRm-ML8szqKeHl6bwg3z99vN18KXZfP2837a4wOdZSoG44ykGosuG8B9Ssr4VobK9wkNbWYE0ljC0VU8DEoFFKU4uyFwYGUKWEC_L2wfcQw88V09LNLhmcJu0xrKkDVoGSMrtn9PU_6D6s0ed09xQvq-re8ESNesLOeRuW_J47066VCqq6ErXI1NV_qLwHzB8YPFqX7_8SvHsQmBhSimi7Q3SzjseOs-6u1e5Rq5l-dYq69jMOf9jfHcIv8BKZqA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kazimierczak, Wojciech</creator><creator>Wajer, Róża</creator><creator>Wajer, Adrian</creator><creator>Kiian, Veronica</creator><creator>Kloska, Anna</creator><creator>Kazimierczak, Natalia</creator><creator>Janiszewska-Olszowska, Joanna</creator><creator>Serafin, Zbigniew</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid><orcidid>https://orcid.org/0000-0003-4374-2568</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid></search><sort><creationdate>20240501</creationdate><title>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</title><author>Kazimierczak, Wojciech ; Wajer, Róża ; Wajer, Adrian ; Kiian, Veronica ; Kloska, Anna ; Kazimierczak, Natalia ; Janiszewska-Olszowska, Joanna ; Serafin, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Comparative analysis</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>Teeth</topic><topic>Tooth diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Wajer, Róża</creatorcontrib><creatorcontrib>Wajer, Adrian</creatorcontrib><creatorcontrib>Kiian, Veronica</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazimierczak, Wojciech</au><au>Wajer, Róża</au><au>Wajer, Adrian</au><au>Kiian, Veronica</au><au>Kloska, Anna</au><au>Kazimierczak, Natalia</au><au>Janiszewska-Olszowska, Joanna</au><au>Serafin, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>2709</spage><pages>2709-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images. : The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score. : The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images. : The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38731237</pmid><doi>10.3390/jcm13092709</doi><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid><orcidid>https://orcid.org/0000-0003-4374-2568</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2024-05, Vol.13 (9), p.2709
issn 2077-0383
2077-0383
language eng
recordid cdi_proquest_miscellaneous_3053977811
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Artificial intelligence
Comparative analysis
CT imaging
Diagnosis
Diagnostic imaging
Medical research
Medicine, Experimental
Patients
Teeth
Tooth diseases
title Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI's Diagnostic Accuracy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periapical%20Lesions%20in%20Panoramic%20Radiography%20and%20CBCT%20Imaging-Assessment%20of%20AI's%20Diagnostic%20Accuracy&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Kazimierczak,%20Wojciech&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=2709&rft.pages=2709-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm13092709&rft_dat=%3Cgale_proqu%3EA793565262%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ea81e7d294811b3ea0b6228fb9ed7ff63fc52cf4909302dae77c624b2c3d39473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053145547&rft_id=info:pmid/38731237&rft_galeid=A793565262&rfr_iscdi=true