Loading…

Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores

In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-05, Vol.17 (9), p.2151
Main Authors: Zhang, Run, Zhang, Hongping, Chen, Meng, Liu, Laibao, Tan, Hongbin, Tang, Youhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and 1500 m) on the ion interaction processes in concrete nanopores using molecular dynamics simulations. At the portlandite interface, the local structural and kinetic characteristics of ions and water molecules are examined. The findings show that the portlandite surface hydrophilicity is unaffected by increasing depth. The density profile and coordination number of ions alter as depth increases, and the diffusion speed noticeably decreases. The main cause of the ions' reduced diffusion velocity is expected to be the low temperature. This work offers a thorough understanding of the cement hydration products' microstructure in deep sea, which may help explain why cement-based underwater infrastructure deteriorates over time.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17092151