Loading…

Woven Agarose–Cellulose Composite Aerogel Fibers with Outstanding Radial Elasticity for Personal Thermal Management

Aerogel fibers are good thermal insulators, suitable for weaving, and show potential as the next generation of intelligent textiles that can effectively reduce heat consumption for personal thermal management. However, the production of continuous aerogel fibers from biomass with sufficient strength...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-05, Vol.16 (20), p.26757-26767
Main Authors: Yang, Xin, Du, Yuxiang, Jiang, Pengjie, Fu, Rui, Liu, Lipeng, Miao, Changqing, Xie, Rongrong, Liu, Yinghui, Wang, Yaxiong, Sai, Huazheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerogel fibers are good thermal insulators, suitable for weaving, and show potential as the next generation of intelligent textiles that can effectively reduce heat consumption for personal thermal management. However, the production of continuous aerogel fibers from biomass with sufficient strength and radial elasticity remains a significant challenge. Herein, continuous gel fibers were produced via wet spinning using agarose (AG) as the matrix, 2,2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNs) as the reinforcing agent, and no other chemical additives by utilizing the gelling properties of AG. Supercritical drying and chemical vapor deposition (CVD) were then used to produce hydrophobic AG-TOCN aerogel fibers (HATAFs). During CVD, the HATAF gel skeleton was covered with an isostructural silica coating. Consequently, the HATAFs can recover from radial compression under 60% strain. Moreover, the HATAFs have low densities (≤0.14 g cm–3), high porosities (≥91.8%), high specific surface areas (≥188 m2 g–1), moderate tensile strengths (≤1.75 MPa), excellent hydrophobicity (water contact angles of >130°), and good thermal insulating properties at different temperatures. Thus, HATAFs are expected to become a new generation of materials for efficient personal thermal management.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c03509