Loading…
A narrow-bandgap RuI3 nanoplatform to synergize radiotherapy, photothermal therapy, and thermoelectric dynamic therapy for tumor eradication
Therapeutic resistance is an essential challenge for nanotherapeutics. Herein, a narrow bandgap RuI3 nanoplatform has been constructed firstly to synergize radiotherapy (RT), photothermal therapy (PTT), and thermoelectric dynamic therapy (TEDT) for tumor eradication. Specifically, the photothermal p...
Saved in:
Published in: | Acta biomaterialia 2024-07, Vol.182, p.188-198 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Therapeutic resistance is an essential challenge for nanotherapeutics. Herein, a narrow bandgap RuI3 nanoplatform has been constructed firstly to synergize radiotherapy (RT), photothermal therapy (PTT), and thermoelectric dynamic therapy (TEDT) for tumor eradication. Specifically, the photothermal performance of RuI3 can ablate tumor cells while inducing TEDT. Noteworthy, the thermoelectric effect is found firstly in RuI3, which can spontaneously generate an electric field under the temperature gradient, prompting carrier separation and triggering massive ROS generation, thus aggravating oxidative stress level and effectively inhibiting HSP-90 expression. Moreover, RuI3 greatly enhances X-ray deposition owing to its high X-ray attenuation capacity, resulting in a pronounced computed tomography imaging contrast and DNA damage. In addition, RuI3 possesses both catalase-like and glutathione peroxidase-like properties, which alleviate tumor hypoxia and reduce antioxidant resistance, further exacerbating 1O2 production during RT and TEDT. This integrated therapy platform combining PTT, TEDT, and RT significantly inhibits tumor growth.
RuI3 nanoparticles were synthesized for the first time. RuI3 exhibited the highest photothermal properties among iodides, and the photothermal conversion efficiency was 53.38 %. RuI3 was found to have a thermoelectric effect, and the power factor could be comparable to that of most conventional thermoelectric materials. RuI3 possessed both catalase-like and glutathione peroxidase-like properties, which contributed to enhancing the effect of radiotherapy.
[Display omitted] |
---|---|
ISSN: | 1742-7061 1878-7568 1878-7568 |
DOI: | 10.1016/j.actbio.2024.05.013 |