Loading…
Self-Assembly Reinforced Alginate Fibers for Enhanced Strength, Toughness, and Bone Regeneration
Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as r...
Saved in:
Published in: | Biomacromolecules 2024-06, Vol.25 (6), p.3475-3485 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff β-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo. |
---|---|
ISSN: | 1525-7797 1526-4602 1526-4602 |
DOI: | 10.1021/acs.biomac.4c00091 |