Loading…

Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer

Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated...

Full description

Saved in:
Bibliographic Details
Published in:Cancer gene therapy 2024-08, Vol.31 (8), p.1266-1279
Main Authors: Rinella, Letizia, Fiorentino, Gloria, Compagno, Mara, Grange, Cristina, Cedrino, Massimo, Marano, Francesca, Bosco, Ornella, Vissio, Elena, Delsedime, Luisa, D’Amelio, Patrizia, Bussolati, Benedetta, Arvat, Emanuela, Catalano, Maria Graziella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-df67c0802375accfabadcee214dddfcb5d9a0fe7681f084911b2b545aa57142e3
container_end_page 1279
container_issue 8
container_start_page 1266
container_title Cancer gene therapy
container_volume 31
creator Rinella, Letizia
Fiorentino, Gloria
Compagno, Mara
Grange, Cristina
Cedrino, Massimo
Marano, Francesca
Bosco, Ornella
Vissio, Elena
Delsedime, Luisa
D’Amelio, Patrizia
Bussolati, Benedetta
Arvat, Emanuela
Catalano, Maria Graziella
description Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated the role of the Wnt signaling modulator Dickkopf-1 (DKK1) in the growth and metastatic progression of mCRPC. DKK1 silencing through siRNA and deletion via CRISPR/Cas9 editing were performed in two different metastatic castration-resistant prostate cancer cell lines (PC3 and DU145). A xenograft tumor model was used to assess tumor growth and metastases. In in vitro experiments, both DKK1 silencing and deletion reduced cell growth and migration of both cell lines. DKK1 knockout clones (DKK1-KO) exhibited cell cycle arrest, tubulin reorganization, and modulation of tumor metastasis-associated genes. Furthermore, in DKK1-KO cells, E-cadherin re-expression and its membrane co-localization with β-catenin were observed, contributing to reduced migration; Cadherin-11, known to increase during epithelial-mesenchymal transition, was down-regulated in DKK1-KO cells. In the xenograft mouse model, DKK1 deletion not only reduced tumor growth but also inhibited the formation of lung metastases. In conclusion, our findings support the key role of DKK1 in the growth and metastatic dissemination of mCRPC, both in vitro and in vivo.
doi_str_mv 10.1038/s41417-024-00783-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3054840243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054840243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-df67c0802375accfabadcee214dddfcb5d9a0fe7681f084911b2b545aa57142e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWh9_wIUMuKmL6M1jmsxSWl9YcKNuQybJ1LHtTE2miv_eq60KLoRALvd899zkEHLI4JSB0GdJMskUBS4pgNKCqg3SY1INaJ4DbJIeFLygrACxQ3ZTegZAUYltsiO0kqA165HHUe2m03ZRUZb1R7e37CTzsX4NKZvE9q17ymzjs3nobMKD3brJHNbRdnXb0BhSjULTZYvYYtEFVBsX4j7ZquwshYP1vUceLi_uh9d0fHd1MzwfUyf4oKO-GigHGrhQuXWusqX1LgTOpPe-cmXuCwtVUAPNKtCyYKzkZS5za3PFJA9ij_RXvrj_ZRlSZ-Z1cmE2s01ol8kIyKWWmJBA9PgP-twuY4OvQ6oQvBAYD1J8RTn8UIqhMotYz218NwzMZ-pmlbpBT_OVulE4dLS2Xpbz4H9GvmNGQKyAhFIzCfF39z-2H_cxjOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093293014</pqid></control><display><type>article</type><title>Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer</title><source>Springer Link</source><creator>Rinella, Letizia ; Fiorentino, Gloria ; Compagno, Mara ; Grange, Cristina ; Cedrino, Massimo ; Marano, Francesca ; Bosco, Ornella ; Vissio, Elena ; Delsedime, Luisa ; D’Amelio, Patrizia ; Bussolati, Benedetta ; Arvat, Emanuela ; Catalano, Maria Graziella</creator><creatorcontrib>Rinella, Letizia ; Fiorentino, Gloria ; Compagno, Mara ; Grange, Cristina ; Cedrino, Massimo ; Marano, Francesca ; Bosco, Ornella ; Vissio, Elena ; Delsedime, Luisa ; D’Amelio, Patrizia ; Bussolati, Benedetta ; Arvat, Emanuela ; Catalano, Maria Graziella</creatorcontrib><description>Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated the role of the Wnt signaling modulator Dickkopf-1 (DKK1) in the growth and metastatic progression of mCRPC. DKK1 silencing through siRNA and deletion via CRISPR/Cas9 editing were performed in two different metastatic castration-resistant prostate cancer cell lines (PC3 and DU145). A xenograft tumor model was used to assess tumor growth and metastases. In in vitro experiments, both DKK1 silencing and deletion reduced cell growth and migration of both cell lines. DKK1 knockout clones (DKK1-KO) exhibited cell cycle arrest, tubulin reorganization, and modulation of tumor metastasis-associated genes. Furthermore, in DKK1-KO cells, E-cadherin re-expression and its membrane co-localization with β-catenin were observed, contributing to reduced migration; Cadherin-11, known to increase during epithelial-mesenchymal transition, was down-regulated in DKK1-KO cells. In the xenograft mouse model, DKK1 deletion not only reduced tumor growth but also inhibited the formation of lung metastases. In conclusion, our findings support the key role of DKK1 in the growth and metastatic dissemination of mCRPC, both in vitro and in vivo.</description><identifier>ISSN: 0929-1903</identifier><identifier>ISSN: 1476-5500</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-024-00783-7</identifier><identifier>PMID: 38740881</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/2 ; 13/31 ; 13/44 ; 42/89 ; 45/77 ; 631/67 ; 631/67/589/466 ; 64/60 ; Biomedical and Life Sciences ; Biomedicine ; Cadherins ; Castration ; Cell cycle ; Cell migration ; Clonal deletion ; CRISPR ; Dkk1 protein ; E-cadherin ; Gene Expression ; Gene Therapy ; Localization ; Lung cancer ; Metastases ; Metastasis ; Prostate cancer ; siRNA ; Tubulin ; Tumor cell lines ; Tumors ; Wnt protein ; Xenografts ; β-Catenin</subject><ispartof>Cancer gene therapy, 2024-08, Vol.31 (8), p.1266-1279</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-df67c0802375accfabadcee214dddfcb5d9a0fe7681f084911b2b545aa57142e3</cites><orcidid>0000-0002-1170-8245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38740881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinella, Letizia</creatorcontrib><creatorcontrib>Fiorentino, Gloria</creatorcontrib><creatorcontrib>Compagno, Mara</creatorcontrib><creatorcontrib>Grange, Cristina</creatorcontrib><creatorcontrib>Cedrino, Massimo</creatorcontrib><creatorcontrib>Marano, Francesca</creatorcontrib><creatorcontrib>Bosco, Ornella</creatorcontrib><creatorcontrib>Vissio, Elena</creatorcontrib><creatorcontrib>Delsedime, Luisa</creatorcontrib><creatorcontrib>D’Amelio, Patrizia</creatorcontrib><creatorcontrib>Bussolati, Benedetta</creatorcontrib><creatorcontrib>Arvat, Emanuela</creatorcontrib><creatorcontrib>Catalano, Maria Graziella</creatorcontrib><title>Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated the role of the Wnt signaling modulator Dickkopf-1 (DKK1) in the growth and metastatic progression of mCRPC. DKK1 silencing through siRNA and deletion via CRISPR/Cas9 editing were performed in two different metastatic castration-resistant prostate cancer cell lines (PC3 and DU145). A xenograft tumor model was used to assess tumor growth and metastases. In in vitro experiments, both DKK1 silencing and deletion reduced cell growth and migration of both cell lines. DKK1 knockout clones (DKK1-KO) exhibited cell cycle arrest, tubulin reorganization, and modulation of tumor metastasis-associated genes. Furthermore, in DKK1-KO cells, E-cadherin re-expression and its membrane co-localization with β-catenin were observed, contributing to reduced migration; Cadherin-11, known to increase during epithelial-mesenchymal transition, was down-regulated in DKK1-KO cells. In the xenograft mouse model, DKK1 deletion not only reduced tumor growth but also inhibited the formation of lung metastases. In conclusion, our findings support the key role of DKK1 in the growth and metastatic dissemination of mCRPC, both in vitro and in vivo.</description><subject>13/2</subject><subject>13/31</subject><subject>13/44</subject><subject>42/89</subject><subject>45/77</subject><subject>631/67</subject><subject>631/67/589/466</subject><subject>64/60</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cadherins</subject><subject>Castration</subject><subject>Cell cycle</subject><subject>Cell migration</subject><subject>Clonal deletion</subject><subject>CRISPR</subject><subject>Dkk1 protein</subject><subject>E-cadherin</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Localization</subject><subject>Lung cancer</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Prostate cancer</subject><subject>siRNA</subject><subject>Tubulin</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>Xenografts</subject><subject>β-Catenin</subject><issn>0929-1903</issn><issn>1476-5500</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWh9_wIUMuKmL6M1jmsxSWl9YcKNuQybJ1LHtTE2miv_eq60KLoRALvd899zkEHLI4JSB0GdJMskUBS4pgNKCqg3SY1INaJ4DbJIeFLygrACxQ3ZTegZAUYltsiO0kqA165HHUe2m03ZRUZb1R7e37CTzsX4NKZvE9q17ymzjs3nobMKD3brJHNbRdnXb0BhSjULTZYvYYtEFVBsX4j7ZquwshYP1vUceLi_uh9d0fHd1MzwfUyf4oKO-GigHGrhQuXWusqX1LgTOpPe-cmXuCwtVUAPNKtCyYKzkZS5za3PFJA9ij_RXvrj_ZRlSZ-Z1cmE2s01ol8kIyKWWmJBA9PgP-twuY4OvQ6oQvBAYD1J8RTn8UIqhMotYz218NwzMZ-pmlbpBT_OVulE4dLS2Xpbz4H9GvmNGQKyAhFIzCfF39z-2H_cxjOE</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rinella, Letizia</creator><creator>Fiorentino, Gloria</creator><creator>Compagno, Mara</creator><creator>Grange, Cristina</creator><creator>Cedrino, Massimo</creator><creator>Marano, Francesca</creator><creator>Bosco, Ornella</creator><creator>Vissio, Elena</creator><creator>Delsedime, Luisa</creator><creator>D’Amelio, Patrizia</creator><creator>Bussolati, Benedetta</creator><creator>Arvat, Emanuela</creator><creator>Catalano, Maria Graziella</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1170-8245</orcidid></search><sort><creationdate>20240801</creationdate><title>Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer</title><author>Rinella, Letizia ; Fiorentino, Gloria ; Compagno, Mara ; Grange, Cristina ; Cedrino, Massimo ; Marano, Francesca ; Bosco, Ornella ; Vissio, Elena ; Delsedime, Luisa ; D’Amelio, Patrizia ; Bussolati, Benedetta ; Arvat, Emanuela ; Catalano, Maria Graziella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-df67c0802375accfabadcee214dddfcb5d9a0fe7681f084911b2b545aa57142e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/2</topic><topic>13/31</topic><topic>13/44</topic><topic>42/89</topic><topic>45/77</topic><topic>631/67</topic><topic>631/67/589/466</topic><topic>64/60</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cadherins</topic><topic>Castration</topic><topic>Cell cycle</topic><topic>Cell migration</topic><topic>Clonal deletion</topic><topic>CRISPR</topic><topic>Dkk1 protein</topic><topic>E-cadherin</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Localization</topic><topic>Lung cancer</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Prostate cancer</topic><topic>siRNA</topic><topic>Tubulin</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>Xenografts</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinella, Letizia</creatorcontrib><creatorcontrib>Fiorentino, Gloria</creatorcontrib><creatorcontrib>Compagno, Mara</creatorcontrib><creatorcontrib>Grange, Cristina</creatorcontrib><creatorcontrib>Cedrino, Massimo</creatorcontrib><creatorcontrib>Marano, Francesca</creatorcontrib><creatorcontrib>Bosco, Ornella</creatorcontrib><creatorcontrib>Vissio, Elena</creatorcontrib><creatorcontrib>Delsedime, Luisa</creatorcontrib><creatorcontrib>D’Amelio, Patrizia</creatorcontrib><creatorcontrib>Bussolati, Benedetta</creatorcontrib><creatorcontrib>Arvat, Emanuela</creatorcontrib><creatorcontrib>Catalano, Maria Graziella</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinella, Letizia</au><au>Fiorentino, Gloria</au><au>Compagno, Mara</au><au>Grange, Cristina</au><au>Cedrino, Massimo</au><au>Marano, Francesca</au><au>Bosco, Ornella</au><au>Vissio, Elena</au><au>Delsedime, Luisa</au><au>D’Amelio, Patrizia</au><au>Bussolati, Benedetta</au><au>Arvat, Emanuela</au><au>Catalano, Maria Graziella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>31</volume><issue>8</issue><spage>1266</spage><epage>1279</epage><pages>1266-1279</pages><issn>0929-1903</issn><issn>1476-5500</issn><eissn>1476-5500</eissn><abstract>Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated the role of the Wnt signaling modulator Dickkopf-1 (DKK1) in the growth and metastatic progression of mCRPC. DKK1 silencing through siRNA and deletion via CRISPR/Cas9 editing were performed in two different metastatic castration-resistant prostate cancer cell lines (PC3 and DU145). A xenograft tumor model was used to assess tumor growth and metastases. In in vitro experiments, both DKK1 silencing and deletion reduced cell growth and migration of both cell lines. DKK1 knockout clones (DKK1-KO) exhibited cell cycle arrest, tubulin reorganization, and modulation of tumor metastasis-associated genes. Furthermore, in DKK1-KO cells, E-cadherin re-expression and its membrane co-localization with β-catenin were observed, contributing to reduced migration; Cadherin-11, known to increase during epithelial-mesenchymal transition, was down-regulated in DKK1-KO cells. In the xenograft mouse model, DKK1 deletion not only reduced tumor growth but also inhibited the formation of lung metastases. In conclusion, our findings support the key role of DKK1 in the growth and metastatic dissemination of mCRPC, both in vitro and in vivo.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38740881</pmid><doi>10.1038/s41417-024-00783-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1170-8245</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-1903
ispartof Cancer gene therapy, 2024-08, Vol.31 (8), p.1266-1279
issn 0929-1903
1476-5500
1476-5500
language eng
recordid cdi_proquest_miscellaneous_3054840243
source Springer Link
subjects 13/2
13/31
13/44
42/89
45/77
631/67
631/67/589/466
64/60
Biomedical and Life Sciences
Biomedicine
Cadherins
Castration
Cell cycle
Cell migration
Clonal deletion
CRISPR
Dkk1 protein
E-cadherin
Gene Expression
Gene Therapy
Localization
Lung cancer
Metastases
Metastasis
Prostate cancer
siRNA
Tubulin
Tumor cell lines
Tumors
Wnt protein
Xenografts
β-Catenin
title Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dickkopf-1%20(DKK1)%20drives%20growth%20and%20metastases%20in%20castration-resistant%20prostate%20cancer&rft.jtitle=Cancer%20gene%20therapy&rft.au=Rinella,%20Letizia&rft.date=2024-08-01&rft.volume=31&rft.issue=8&rft.spage=1266&rft.epage=1279&rft.pages=1266-1279&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-024-00783-7&rft_dat=%3Cproquest_cross%3E3054840243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-df67c0802375accfabadcee214dddfcb5d9a0fe7681f084911b2b545aa57142e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093293014&rft_id=info:pmid/38740881&rfr_iscdi=true