Loading…

Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization

In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector–matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In thi...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2024-05, Vol.18 (21), p.13652-13661
Main Authors: Tan, Tian, Guo, Haoyue, Li, Yida, Wang, Yafei, Cai, Weiwei, Bao, Wenzhong, Zhou, Peng, Feng, Xuewei
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13661
container_issue 21
container_start_page 13652
container_title ACS nano
container_volume 18
creator Tan, Tian
Guo, Haoyue
Li, Yida
Wang, Yafei
Cai, Weiwei
Bao, Wenzhong
Zhou, Peng
Feng, Xuewei
description In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector–matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.
doi_str_mv 10.1021/acsnano.4c00456
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055891899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055891899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-2b6c29b1039ec0adc895ecbfbb5f68739a9f88807f6ace117ecd89ee5ac17b4a3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqUws3pEQil2Eif2WBUKlVoxtCC26OKei6vUhthhgD9PSium74an7-4eIdecjThL-R3o4MD5Ua4Zy0VxQgZcZUXCZPF2-j8Lfk4uQtgyJkpZFgPyM3MRNy1E6x31hi78MqUL3MUWXLAh-pbe45fVGCi4NR07aPymQzqxre5sDNT0xBJd6GPahX2LdXTcRe_8zneBvuK71Q3SFbQbjHTuNTT2-2_fJTkz0AS8OuaQvEwfVpOnZP78OJuM5wmkaR6TtC50qmrOMoWawVpLJVDXpq6FKWSZKVBGSslKU4BGzkvUa6kQBWhe1jlkQ3Jz6P1o_WeHIVY7GzQ2DTjsT6wyJoRUXCrVo7cHtLdZbX3X9v-GirNqr7g6Kq6OirNfgyBz6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055891899</pqid></control><display><type>article</type><title>Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tan, Tian ; Guo, Haoyue ; Li, Yida ; Wang, Yafei ; Cai, Weiwei ; Bao, Wenzhong ; Zhou, Peng ; Feng, Xuewei</creator><creatorcontrib>Tan, Tian ; Guo, Haoyue ; Li, Yida ; Wang, Yafei ; Cai, Weiwei ; Bao, Wenzhong ; Zhou, Peng ; Feng, Xuewei</creatorcontrib><description>In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector–matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c00456</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2024-05, Vol.18 (21), p.13652-13661</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7301-1013 ; 0000-0002-3871-467X ; 0000-0002-5675-582X ; 0000-0002-1463-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Guo, Haoyue</creatorcontrib><creatorcontrib>Li, Yida</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Bao, Wenzhong</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Feng, Xuewei</creatorcontrib><title>Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector–matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqUws3pEQil2Eif2WBUKlVoxtCC26OKei6vUhthhgD9PSium74an7-4eIdecjThL-R3o4MD5Ua4Zy0VxQgZcZUXCZPF2-j8Lfk4uQtgyJkpZFgPyM3MRNy1E6x31hi78MqUL3MUWXLAh-pbe45fVGCi4NR07aPymQzqxre5sDNT0xBJd6GPahX2LdXTcRe_8zneBvuK71Q3SFbQbjHTuNTT2-2_fJTkz0AS8OuaQvEwfVpOnZP78OJuM5wmkaR6TtC50qmrOMoWawVpLJVDXpq6FKWSZKVBGSslKU4BGzkvUa6kQBWhe1jlkQ3Jz6P1o_WeHIVY7GzQ2DTjsT6wyJoRUXCrVo7cHtLdZbX3X9v-GirNqr7g6Kq6OirNfgyBz6w</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Tan, Tian</creator><creator>Guo, Haoyue</creator><creator>Li, Yida</creator><creator>Wang, Yafei</creator><creator>Cai, Weiwei</creator><creator>Bao, Wenzhong</creator><creator>Zhou, Peng</creator><creator>Feng, Xuewei</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0000-0002-3871-467X</orcidid><orcidid>https://orcid.org/0000-0002-5675-582X</orcidid><orcidid>https://orcid.org/0000-0002-1463-8270</orcidid></search><sort><creationdate>20240528</creationdate><title>Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization</title><author>Tan, Tian ; Guo, Haoyue ; Li, Yida ; Wang, Yafei ; Cai, Weiwei ; Bao, Wenzhong ; Zhou, Peng ; Feng, Xuewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-2b6c29b1039ec0adc895ecbfbb5f68739a9f88807f6ace117ecd89ee5ac17b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Guo, Haoyue</creatorcontrib><creatorcontrib>Li, Yida</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Bao, Wenzhong</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Feng, Xuewei</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Tian</au><au>Guo, Haoyue</au><au>Li, Yida</au><au>Wang, Yafei</au><au>Cai, Weiwei</au><au>Bao, Wenzhong</au><au>Zhou, Peng</au><au>Feng, Xuewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-05-28</date><risdate>2024</risdate><volume>18</volume><issue>21</issue><spage>13652</spage><epage>13661</epage><pages>13652-13661</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector–matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.4c00456</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0000-0002-3871-467X</orcidid><orcidid>https://orcid.org/0000-0002-5675-582X</orcidid><orcidid>https://orcid.org/0000-0002-1463-8270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-05, Vol.18 (21), p.13652-13661
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3055891899
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20MoS2%20Memtransistor%20Devices%20and%20Analogue%20Circuits%20for%20Sensor%20Fusion%20in%20Autonomous%20Vehicle%20Target%20Localization&rft.jtitle=ACS%20nano&rft.au=Tan,%20Tian&rft.date=2024-05-28&rft.volume=18&rft.issue=21&rft.spage=13652&rft.epage=13661&rft.pages=13652-13661&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c00456&rft_dat=%3Cproquest_acs_j%3E3055891899%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a224t-2b6c29b1039ec0adc895ecbfbb5f68739a9f88807f6ace117ecd89ee5ac17b4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055891899&rft_id=info:pmid/&rfr_iscdi=true