Loading…

DNA damage induces p53-independent apoptosis through ribosome stalling

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition,...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2024-05, Vol.384 (6697), p.785-792
Main Authors: Boon, Nicolaas J, Oliveira, Rafaela A, Körner, Pierré-René, Kochavi, Adva, Mertens, Sander, Malka, Yuval, Voogd, Rhianne, van der Horst, Suzanne E M, Huismans, Maarten A, Smabers, Lidwien P, Draper, Jonne M, Wessels, Lodewyk F A, Haahr, Peter, Roodhart, Jeanine M L, Schumacher, Ton N M, Snippert, Hugo J, Agami, Reuven, Brummelkamp, Thijn R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3
cites cdi_FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3
container_end_page 792
container_issue 6697
container_start_page 785
container_title Science (American Association for the Advancement of Science)
container_volume 384
creator Boon, Nicolaas J
Oliveira, Rafaela A
Körner, Pierré-René
Kochavi, Adva
Mertens, Sander
Malka, Yuval
Voogd, Rhianne
van der Horst, Suzanne E M
Huismans, Maarten A
Smabers, Lidwien P
Draper, Jonne M
Wessels, Lodewyk F A
Haahr, Peter
Roodhart, Jeanine M L
Schumacher, Ton N M
Snippert, Hugo J
Agami, Reuven
Brummelkamp, Thijn R
description In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.
doi_str_mv 10.1126/science.adh7950
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056665539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055505258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EoqUws6FILCxpL3bPiceqUECqYIE5cmynTZXEwU4G_ntcNTAw3Id0v3t6eoTcJjBPEsoXXlWmVWYu9T4VCGdkmoDAWFBg52QKwHicQYoTcuX9ASDcBLskE5alyNJsOSWbx7dVpGUjdyaqWj0o46MOWRx205nQ2j6Sne166ysf9Xtnh90-clVhvW1M5HtZ11W7uyYXpay9uRnnjHxunj7WL_H2_fl1vdrGilHsg5dMKipBAF1qoQzjpQZpEk6lKjSWwJROgcmCSV4ghgIpxVIJTstSLw2bkYeTbufs12B8nzeVV6auZWvs4HMGyDlHZCKg9__Qgx1cG9wdKURAilmgFidKOeu9M2XeuaqR7jtPID9GnI8R52PE4eNu1B2Kxug__jdT9gMNMHl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055505258</pqid></control><display><type>article</type><title>DNA damage induces p53-independent apoptosis through ribosome stalling</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Boon, Nicolaas J ; Oliveira, Rafaela A ; Körner, Pierré-René ; Kochavi, Adva ; Mertens, Sander ; Malka, Yuval ; Voogd, Rhianne ; van der Horst, Suzanne E M ; Huismans, Maarten A ; Smabers, Lidwien P ; Draper, Jonne M ; Wessels, Lodewyk F A ; Haahr, Peter ; Roodhart, Jeanine M L ; Schumacher, Ton N M ; Snippert, Hugo J ; Agami, Reuven ; Brummelkamp, Thijn R</creator><creatorcontrib>Boon, Nicolaas J ; Oliveira, Rafaela A ; Körner, Pierré-René ; Kochavi, Adva ; Mertens, Sander ; Malka, Yuval ; Voogd, Rhianne ; van der Horst, Suzanne E M ; Huismans, Maarten A ; Smabers, Lidwien P ; Draper, Jonne M ; Wessels, Lodewyk F A ; Haahr, Peter ; Roodhart, Jeanine M L ; Schumacher, Ton N M ; Snippert, Hugo J ; Agami, Reuven ; Brummelkamp, Thijn R</creatorcontrib><description>In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adh7950</identifier><identifier>PMID: 38753784</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Apoptosis ; Cell death ; Cell Line, Tumor ; Chemotherapy ; Codon - genetics ; Damage ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Endonuclease ; Genetic screening ; Humans ; Leucine - genetics ; MAP Kinase Kinase Kinases - genetics ; MAP Kinase Kinase Kinases - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; p53 Protein ; Protein Biosynthesis ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Ribosomes - metabolism ; Signal Transduction ; Stalling ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2024-05, Vol.384 (6697), p.785-792</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3</citedby><cites>FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3</cites><orcidid>0000-0003-1556-0820 ; 0000-0002-3066-7071 ; 0000-0001-6495-3482 ; 0009-0004-7664-212X ; 0000-0002-2848-2473 ; 0000-0002-1656-8480 ; 0009-0009-5328-2543 ; 0009-0007-9631-1012 ; 0000-0002-9964-234X ; 0000-0001-9680-2304 ; 0000-0002-1656-6995 ; 0000-0002-6274-1942 ; 0000-0003-1398-8970 ; 0000-0003-0517-8804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38753784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boon, Nicolaas J</creatorcontrib><creatorcontrib>Oliveira, Rafaela A</creatorcontrib><creatorcontrib>Körner, Pierré-René</creatorcontrib><creatorcontrib>Kochavi, Adva</creatorcontrib><creatorcontrib>Mertens, Sander</creatorcontrib><creatorcontrib>Malka, Yuval</creatorcontrib><creatorcontrib>Voogd, Rhianne</creatorcontrib><creatorcontrib>van der Horst, Suzanne E M</creatorcontrib><creatorcontrib>Huismans, Maarten A</creatorcontrib><creatorcontrib>Smabers, Lidwien P</creatorcontrib><creatorcontrib>Draper, Jonne M</creatorcontrib><creatorcontrib>Wessels, Lodewyk F A</creatorcontrib><creatorcontrib>Haahr, Peter</creatorcontrib><creatorcontrib>Roodhart, Jeanine M L</creatorcontrib><creatorcontrib>Schumacher, Ton N M</creatorcontrib><creatorcontrib>Snippert, Hugo J</creatorcontrib><creatorcontrib>Agami, Reuven</creatorcontrib><creatorcontrib>Brummelkamp, Thijn R</creatorcontrib><title>DNA damage induces p53-independent apoptosis through ribosome stalling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.</description><subject>Apoptosis</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Codon - genetics</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Endonuclease</subject><subject>Genetic screening</subject><subject>Humans</subject><subject>Leucine - genetics</subject><subject>MAP Kinase Kinase Kinases - genetics</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>p53 Protein</subject><subject>Protein Biosynthesis</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>Signal Transduction</subject><subject>Stalling</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EoqUws6FILCxpL3bPiceqUECqYIE5cmynTZXEwU4G_ntcNTAw3Id0v3t6eoTcJjBPEsoXXlWmVWYu9T4VCGdkmoDAWFBg52QKwHicQYoTcuX9ASDcBLskE5alyNJsOSWbx7dVpGUjdyaqWj0o46MOWRx205nQ2j6Sne166ysf9Xtnh90-clVhvW1M5HtZ11W7uyYXpay9uRnnjHxunj7WL_H2_fl1vdrGilHsg5dMKipBAF1qoQzjpQZpEk6lKjSWwJROgcmCSV4ghgIpxVIJTstSLw2bkYeTbufs12B8nzeVV6auZWvs4HMGyDlHZCKg9__Qgx1cG9wdKURAilmgFidKOeu9M2XeuaqR7jtPID9GnI8R52PE4eNu1B2Kxug__jdT9gMNMHl-</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Boon, Nicolaas J</creator><creator>Oliveira, Rafaela A</creator><creator>Körner, Pierré-René</creator><creator>Kochavi, Adva</creator><creator>Mertens, Sander</creator><creator>Malka, Yuval</creator><creator>Voogd, Rhianne</creator><creator>van der Horst, Suzanne E M</creator><creator>Huismans, Maarten A</creator><creator>Smabers, Lidwien P</creator><creator>Draper, Jonne M</creator><creator>Wessels, Lodewyk F A</creator><creator>Haahr, Peter</creator><creator>Roodhart, Jeanine M L</creator><creator>Schumacher, Ton N M</creator><creator>Snippert, Hugo J</creator><creator>Agami, Reuven</creator><creator>Brummelkamp, Thijn R</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1556-0820</orcidid><orcidid>https://orcid.org/0000-0002-3066-7071</orcidid><orcidid>https://orcid.org/0000-0001-6495-3482</orcidid><orcidid>https://orcid.org/0009-0004-7664-212X</orcidid><orcidid>https://orcid.org/0000-0002-2848-2473</orcidid><orcidid>https://orcid.org/0000-0002-1656-8480</orcidid><orcidid>https://orcid.org/0009-0009-5328-2543</orcidid><orcidid>https://orcid.org/0009-0007-9631-1012</orcidid><orcidid>https://orcid.org/0000-0002-9964-234X</orcidid><orcidid>https://orcid.org/0000-0001-9680-2304</orcidid><orcidid>https://orcid.org/0000-0002-1656-6995</orcidid><orcidid>https://orcid.org/0000-0002-6274-1942</orcidid><orcidid>https://orcid.org/0000-0003-1398-8970</orcidid><orcidid>https://orcid.org/0000-0003-0517-8804</orcidid></search><sort><creationdate>20240517</creationdate><title>DNA damage induces p53-independent apoptosis through ribosome stalling</title><author>Boon, Nicolaas J ; Oliveira, Rafaela A ; Körner, Pierré-René ; Kochavi, Adva ; Mertens, Sander ; Malka, Yuval ; Voogd, Rhianne ; van der Horst, Suzanne E M ; Huismans, Maarten A ; Smabers, Lidwien P ; Draper, Jonne M ; Wessels, Lodewyk F A ; Haahr, Peter ; Roodhart, Jeanine M L ; Schumacher, Ton N M ; Snippert, Hugo J ; Agami, Reuven ; Brummelkamp, Thijn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apoptosis</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Codon - genetics</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Endonuclease</topic><topic>Genetic screening</topic><topic>Humans</topic><topic>Leucine - genetics</topic><topic>MAP Kinase Kinase Kinases - genetics</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>p53 Protein</topic><topic>Protein Biosynthesis</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>Signal Transduction</topic><topic>Stalling</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boon, Nicolaas J</creatorcontrib><creatorcontrib>Oliveira, Rafaela A</creatorcontrib><creatorcontrib>Körner, Pierré-René</creatorcontrib><creatorcontrib>Kochavi, Adva</creatorcontrib><creatorcontrib>Mertens, Sander</creatorcontrib><creatorcontrib>Malka, Yuval</creatorcontrib><creatorcontrib>Voogd, Rhianne</creatorcontrib><creatorcontrib>van der Horst, Suzanne E M</creatorcontrib><creatorcontrib>Huismans, Maarten A</creatorcontrib><creatorcontrib>Smabers, Lidwien P</creatorcontrib><creatorcontrib>Draper, Jonne M</creatorcontrib><creatorcontrib>Wessels, Lodewyk F A</creatorcontrib><creatorcontrib>Haahr, Peter</creatorcontrib><creatorcontrib>Roodhart, Jeanine M L</creatorcontrib><creatorcontrib>Schumacher, Ton N M</creatorcontrib><creatorcontrib>Snippert, Hugo J</creatorcontrib><creatorcontrib>Agami, Reuven</creatorcontrib><creatorcontrib>Brummelkamp, Thijn R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boon, Nicolaas J</au><au>Oliveira, Rafaela A</au><au>Körner, Pierré-René</au><au>Kochavi, Adva</au><au>Mertens, Sander</au><au>Malka, Yuval</au><au>Voogd, Rhianne</au><au>van der Horst, Suzanne E M</au><au>Huismans, Maarten A</au><au>Smabers, Lidwien P</au><au>Draper, Jonne M</au><au>Wessels, Lodewyk F A</au><au>Haahr, Peter</au><au>Roodhart, Jeanine M L</au><au>Schumacher, Ton N M</au><au>Snippert, Hugo J</au><au>Agami, Reuven</au><au>Brummelkamp, Thijn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA damage induces p53-independent apoptosis through ribosome stalling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-05-17</date><risdate>2024</risdate><volume>384</volume><issue>6697</issue><spage>785</spage><epage>792</epage><pages>785-792</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>38753784</pmid><doi>10.1126/science.adh7950</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1556-0820</orcidid><orcidid>https://orcid.org/0000-0002-3066-7071</orcidid><orcidid>https://orcid.org/0000-0001-6495-3482</orcidid><orcidid>https://orcid.org/0009-0004-7664-212X</orcidid><orcidid>https://orcid.org/0000-0002-2848-2473</orcidid><orcidid>https://orcid.org/0000-0002-1656-8480</orcidid><orcidid>https://orcid.org/0009-0009-5328-2543</orcidid><orcidid>https://orcid.org/0009-0007-9631-1012</orcidid><orcidid>https://orcid.org/0000-0002-9964-234X</orcidid><orcidid>https://orcid.org/0000-0001-9680-2304</orcidid><orcidid>https://orcid.org/0000-0002-1656-6995</orcidid><orcidid>https://orcid.org/0000-0002-6274-1942</orcidid><orcidid>https://orcid.org/0000-0003-1398-8970</orcidid><orcidid>https://orcid.org/0000-0003-0517-8804</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2024-05, Vol.384 (6697), p.785-792
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_3056665539
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Apoptosis
Cell death
Cell Line, Tumor
Chemotherapy
Codon - genetics
Damage
Deoxyribonucleic acid
DNA
DNA Damage
Endonuclease
Genetic screening
Humans
Leucine - genetics
MAP Kinase Kinase Kinases - genetics
MAP Kinase Kinase Kinases - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
p53 Protein
Protein Biosynthesis
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Ribosomes - metabolism
Signal Transduction
Stalling
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
title DNA damage induces p53-independent apoptosis through ribosome stalling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20damage%20induces%20p53-independent%20apoptosis%20through%20ribosome%20stalling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Boon,%20Nicolaas%20J&rft.date=2024-05-17&rft.volume=384&rft.issue=6697&rft.spage=785&rft.epage=792&rft.pages=785-792&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adh7950&rft_dat=%3Cproquest_cross%3E3055505258%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-808ac2a09024d9ce36fd0ae162acbd5f03cd703ab3a6b556b50aa94c962ffd4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055505258&rft_id=info:pmid/38753784&rfr_iscdi=true