Loading…
Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics
A nanoflower-like FeCo-hydro(oxy)oxide catalyst is successfully fabricated using a simple one-step electrodeposition technique. The optimized Fe9-Co1 catalyst exhibits good performance for OER (η50= 222 mV) and overall water splitting (1.73 V@100 mA cm−2). The reconstructed FeOOH/CoOOH serves as the...
Saved in:
Published in: | Journal of colloid and interface science 2024-09, Vol.670, p.124-131 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-ec2c39ef0539dc2b428f8e41b589c65211558587d7d1e0f21052822c1eaf458f3 |
container_end_page | 131 |
container_issue | |
container_start_page | 124 |
container_title | Journal of colloid and interface science |
container_volume | 670 |
creator | Wang, Lixia Huang, Jia Gan, Qiuping Huang, Jiasui Hu, Xinran Liu, Dongcheng Taylor Isimjan, Tayirjan Yang, Xiulin |
description | A nanoflower-like FeCo-hydro(oxy)oxide catalyst is successfully fabricated using a simple one-step electrodeposition technique. The optimized Fe9-Co1 catalyst exhibits good performance for OER (η50= 222 mV) and overall water splitting (1.73 V@100 mA cm−2). The reconstructed FeOOH/CoOOH serves as the real active sites, and a small amount of Co species can optimize the activation energies between the active sites and oxygen-containing intermediates, thereby improving the performance of water splitting.
[Display omitted]
•A nanoflower-like FeCo hybrids is synthesized by a facile electrodeposition method.•The Fe9-Co1 catalyst delivers a good OER activity (η50 = 222 mV) and stability.•The reconstructed FeOOH/CoOOH serves as the real active sites during OER process.•The synergy between Co and Fe species reduces the activation energies with intermediates and improves OER activity.
Iron hydroxide (FeOOH) is a potential active component in iron-based electrocatalysts for water electrolysis. However, its catalytic performance is constrained by its slow oxygen evolution reaction (OER) kinetics. Herein, we synthesized a nanoflower-like FeCo-hydro(oxy)oxides composite with tunable Fe/Co ratios (Fex-Coy) on nickel foam (NF) via a one-step electrodeposition technique. This method allows for precise control over the morphology and composition of the hybrid nanoflowers. The optimized Fe9-Co1 discloses favorable OER performance with a low overpotential of 222 mV at 50 mA cm−2 and demonstrates good stability exceeding 60 h at 10 mA cm−2. Further, an assembled Fe9-Co1(+)||Pt/C(−) dual-electrode configuration achieves a low cell voltage of 1.73 V at the current density of 100 mA cm−2 for water splitting, with long-term stability for 70 h and minimal degradation. Studies indicate that the distinctive nanoflower morphology of Fe9-Co1 enhances active site exposure, while both FeOOH and reconstructed CoOOH serve as catalytic centers, contributing to the observed OER performance. This work introduces a facile approach for synthesizing OER electrocatalysts, underscoring the role of the high-valence state of Fe/Co as active sites in the OER process. |
doi_str_mv | 10.1016/j.jcis.2024.05.034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056668116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724010051</els_id><sourcerecordid>3056668116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ec2c39ef0539dc2b428f8e41b589c65211558587d7d1e0f21052822c1eaf458f3</originalsourceid><addsrcrecordid>eNp9kD9P5DAQxS10CJY_X4Di5PKahLETJ45Ec1rdAhISDdRW1p5svGRtznaA_faXaOFKqinmvTfzfoRcMcgZsOp6m2-1jTkHXuYgcijKI7Jg0IisZlD8IAsAzrKmbupTchbjFoAxIZoTclrIWjS8qhfEr6zDLI3Oug11rfPd4N8xZIN9QbrC66Wn_X4drIn03aae9nbTU-1dQpeo_9j3exP8hzVIW61xwNCmOWnabNBRfPPDmKx39GU6k6yOF-S4a4eIl5_znDyv_jwt77KHx9v75e-HTBdQpww110WDHYiiMZqvSy47iSVbC9noSvC5iBSyNrVhCB1nILjkXDNsu1LIrjgnvw65r8H_HTEmtbNxenBoHfoxqgJEVVWSsWqS8oNUBx9jwE69Brtrw14xUDNotVUzaDWDViDUBHoy_fzMH9c7NP8tX2Qnwc1BgFPLN4tBRW3RaTQ2oE7KePtd_j_4z5DW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056668116</pqid></control><display><type>article</type><title>Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics</title><source>Elsevier</source><creator>Wang, Lixia ; Huang, Jia ; Gan, Qiuping ; Huang, Jiasui ; Hu, Xinran ; Liu, Dongcheng ; Taylor Isimjan, Tayirjan ; Yang, Xiulin</creator><creatorcontrib>Wang, Lixia ; Huang, Jia ; Gan, Qiuping ; Huang, Jiasui ; Hu, Xinran ; Liu, Dongcheng ; Taylor Isimjan, Tayirjan ; Yang, Xiulin</creatorcontrib><description>A nanoflower-like FeCo-hydro(oxy)oxide catalyst is successfully fabricated using a simple one-step electrodeposition technique. The optimized Fe9-Co1 catalyst exhibits good performance for OER (η50= 222 mV) and overall water splitting (1.73 V@100 mA cm−2). The reconstructed FeOOH/CoOOH serves as the real active sites, and a small amount of Co species can optimize the activation energies between the active sites and oxygen-containing intermediates, thereby improving the performance of water splitting.
[Display omitted]
•A nanoflower-like FeCo hybrids is synthesized by a facile electrodeposition method.•The Fe9-Co1 catalyst delivers a good OER activity (η50 = 222 mV) and stability.•The reconstructed FeOOH/CoOOH serves as the real active sites during OER process.•The synergy between Co and Fe species reduces the activation energies with intermediates and improves OER activity.
Iron hydroxide (FeOOH) is a potential active component in iron-based electrocatalysts for water electrolysis. However, its catalytic performance is constrained by its slow oxygen evolution reaction (OER) kinetics. Herein, we synthesized a nanoflower-like FeCo-hydro(oxy)oxides composite with tunable Fe/Co ratios (Fex-Coy) on nickel foam (NF) via a one-step electrodeposition technique. This method allows for precise control over the morphology and composition of the hybrid nanoflowers. The optimized Fe9-Co1 discloses favorable OER performance with a low overpotential of 222 mV at 50 mA cm−2 and demonstrates good stability exceeding 60 h at 10 mA cm−2. Further, an assembled Fe9-Co1(+)||Pt/C(−) dual-electrode configuration achieves a low cell voltage of 1.73 V at the current density of 100 mA cm−2 for water splitting, with long-term stability for 70 h and minimal degradation. Studies indicate that the distinctive nanoflower morphology of Fe9-Co1 enhances active site exposure, while both FeOOH and reconstructed CoOOH serve as catalytic centers, contributing to the observed OER performance. This work introduces a facile approach for synthesizing OER electrocatalysts, underscoring the role of the high-valence state of Fe/Co as active sites in the OER process.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.05.034</identifier><identifier>PMID: 38759267</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrocatalyst ; Electrodeposition ; Overall water splitting ; Oxygen evolution reaction</subject><ispartof>Journal of colloid and interface science, 2024-09, Vol.670, p.124-131</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-ec2c39ef0539dc2b428f8e41b589c65211558587d7d1e0f21052822c1eaf458f3</cites><orcidid>0000-0003-2642-4963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38759267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Huang, Jia</creatorcontrib><creatorcontrib>Gan, Qiuping</creatorcontrib><creatorcontrib>Huang, Jiasui</creatorcontrib><creatorcontrib>Hu, Xinran</creatorcontrib><creatorcontrib>Liu, Dongcheng</creatorcontrib><creatorcontrib>Taylor Isimjan, Tayirjan</creatorcontrib><creatorcontrib>Yang, Xiulin</creatorcontrib><title>Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>A nanoflower-like FeCo-hydro(oxy)oxide catalyst is successfully fabricated using a simple one-step electrodeposition technique. The optimized Fe9-Co1 catalyst exhibits good performance for OER (η50= 222 mV) and overall water splitting (1.73 V@100 mA cm−2). The reconstructed FeOOH/CoOOH serves as the real active sites, and a small amount of Co species can optimize the activation energies between the active sites and oxygen-containing intermediates, thereby improving the performance of water splitting.
[Display omitted]
•A nanoflower-like FeCo hybrids is synthesized by a facile electrodeposition method.•The Fe9-Co1 catalyst delivers a good OER activity (η50 = 222 mV) and stability.•The reconstructed FeOOH/CoOOH serves as the real active sites during OER process.•The synergy between Co and Fe species reduces the activation energies with intermediates and improves OER activity.
Iron hydroxide (FeOOH) is a potential active component in iron-based electrocatalysts for water electrolysis. However, its catalytic performance is constrained by its slow oxygen evolution reaction (OER) kinetics. Herein, we synthesized a nanoflower-like FeCo-hydro(oxy)oxides composite with tunable Fe/Co ratios (Fex-Coy) on nickel foam (NF) via a one-step electrodeposition technique. This method allows for precise control over the morphology and composition of the hybrid nanoflowers. The optimized Fe9-Co1 discloses favorable OER performance with a low overpotential of 222 mV at 50 mA cm−2 and demonstrates good stability exceeding 60 h at 10 mA cm−2. Further, an assembled Fe9-Co1(+)||Pt/C(−) dual-electrode configuration achieves a low cell voltage of 1.73 V at the current density of 100 mA cm−2 for water splitting, with long-term stability for 70 h and minimal degradation. Studies indicate that the distinctive nanoflower morphology of Fe9-Co1 enhances active site exposure, while both FeOOH and reconstructed CoOOH serve as catalytic centers, contributing to the observed OER performance. This work introduces a facile approach for synthesizing OER electrocatalysts, underscoring the role of the high-valence state of Fe/Co as active sites in the OER process.</description><subject>Electrocatalyst</subject><subject>Electrodeposition</subject><subject>Overall water splitting</subject><subject>Oxygen evolution reaction</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD9P5DAQxS10CJY_X4Di5PKahLETJ45Ec1rdAhISDdRW1p5svGRtznaA_faXaOFKqinmvTfzfoRcMcgZsOp6m2-1jTkHXuYgcijKI7Jg0IisZlD8IAsAzrKmbupTchbjFoAxIZoTclrIWjS8qhfEr6zDLI3Oug11rfPd4N8xZIN9QbrC66Wn_X4drIn03aae9nbTU-1dQpeo_9j3exP8hzVIW61xwNCmOWnabNBRfPPDmKx39GU6k6yOF-S4a4eIl5_znDyv_jwt77KHx9v75e-HTBdQpww110WDHYiiMZqvSy47iSVbC9noSvC5iBSyNrVhCB1nILjkXDNsu1LIrjgnvw65r8H_HTEmtbNxenBoHfoxqgJEVVWSsWqS8oNUBx9jwE69Brtrw14xUDNotVUzaDWDViDUBHoy_fzMH9c7NP8tX2Qnwc1BgFPLN4tBRW3RaTQ2oE7KePtd_j_4z5DW</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Wang, Lixia</creator><creator>Huang, Jia</creator><creator>Gan, Qiuping</creator><creator>Huang, Jiasui</creator><creator>Hu, Xinran</creator><creator>Liu, Dongcheng</creator><creator>Taylor Isimjan, Tayirjan</creator><creator>Yang, Xiulin</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2642-4963</orcidid></search><sort><creationdate>20240915</creationdate><title>Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics</title><author>Wang, Lixia ; Huang, Jia ; Gan, Qiuping ; Huang, Jiasui ; Hu, Xinran ; Liu, Dongcheng ; Taylor Isimjan, Tayirjan ; Yang, Xiulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ec2c39ef0539dc2b428f8e41b589c65211558587d7d1e0f21052822c1eaf458f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrocatalyst</topic><topic>Electrodeposition</topic><topic>Overall water splitting</topic><topic>Oxygen evolution reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Huang, Jia</creatorcontrib><creatorcontrib>Gan, Qiuping</creatorcontrib><creatorcontrib>Huang, Jiasui</creatorcontrib><creatorcontrib>Hu, Xinran</creatorcontrib><creatorcontrib>Liu, Dongcheng</creatorcontrib><creatorcontrib>Taylor Isimjan, Tayirjan</creatorcontrib><creatorcontrib>Yang, Xiulin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lixia</au><au>Huang, Jia</au><au>Gan, Qiuping</au><au>Huang, Jiasui</au><au>Hu, Xinran</au><au>Liu, Dongcheng</au><au>Taylor Isimjan, Tayirjan</au><au>Yang, Xiulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>670</volume><spage>124</spage><epage>131</epage><pages>124-131</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>A nanoflower-like FeCo-hydro(oxy)oxide catalyst is successfully fabricated using a simple one-step electrodeposition technique. The optimized Fe9-Co1 catalyst exhibits good performance for OER (η50= 222 mV) and overall water splitting (1.73 V@100 mA cm−2). The reconstructed FeOOH/CoOOH serves as the real active sites, and a small amount of Co species can optimize the activation energies between the active sites and oxygen-containing intermediates, thereby improving the performance of water splitting.
[Display omitted]
•A nanoflower-like FeCo hybrids is synthesized by a facile electrodeposition method.•The Fe9-Co1 catalyst delivers a good OER activity (η50 = 222 mV) and stability.•The reconstructed FeOOH/CoOOH serves as the real active sites during OER process.•The synergy between Co and Fe species reduces the activation energies with intermediates and improves OER activity.
Iron hydroxide (FeOOH) is a potential active component in iron-based electrocatalysts for water electrolysis. However, its catalytic performance is constrained by its slow oxygen evolution reaction (OER) kinetics. Herein, we synthesized a nanoflower-like FeCo-hydro(oxy)oxides composite with tunable Fe/Co ratios (Fex-Coy) on nickel foam (NF) via a one-step electrodeposition technique. This method allows for precise control over the morphology and composition of the hybrid nanoflowers. The optimized Fe9-Co1 discloses favorable OER performance with a low overpotential of 222 mV at 50 mA cm−2 and demonstrates good stability exceeding 60 h at 10 mA cm−2. Further, an assembled Fe9-Co1(+)||Pt/C(−) dual-electrode configuration achieves a low cell voltage of 1.73 V at the current density of 100 mA cm−2 for water splitting, with long-term stability for 70 h and minimal degradation. Studies indicate that the distinctive nanoflower morphology of Fe9-Co1 enhances active site exposure, while both FeOOH and reconstructed CoOOH serve as catalytic centers, contributing to the observed OER performance. This work introduces a facile approach for synthesizing OER electrocatalysts, underscoring the role of the high-valence state of Fe/Co as active sites in the OER process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38759267</pmid><doi>10.1016/j.jcis.2024.05.034</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2642-4963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-09, Vol.670, p.124-131 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3056668116 |
source | Elsevier |
subjects | Electrocatalyst Electrodeposition Overall water splitting Oxygen evolution reaction |
title | Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-tuning%20nanoflower-like%20Fe/Co%20hybrids%20with%20high%20content%20oxyhydroxide%20accelerating%20oxygen%20evolution%20kinetics&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Lixia&rft.date=2024-09-15&rft.volume=670&rft.spage=124&rft.epage=131&rft.pages=124-131&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.05.034&rft_dat=%3Cproquest_cross%3E3056668116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-ec2c39ef0539dc2b428f8e41b589c65211558587d7d1e0f21052822c1eaf458f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056668116&rft_id=info:pmid/38759267&rfr_iscdi=true |