Loading…

A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer

Objective To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify lumi...

Full description

Saved in:
Bibliographic Details
Published in:Radiologia medica 2024-06, Vol.129 (6), p.864-878
Main Authors: Petrillo, Antonella, Fusco, Roberta, Petrosino, Teresa, Vallone, Paolo, Granata, Vincenza, Rubulotta, Maria Rosaria, Pariante, Paolo, Raiano, Nicola, Scognamiglio, Giosuè, Fanizzi, Annarita, Massafra, Raffaella, Lafranceschina, Miria, La Forgia, Daniele, Greco, Laura, Ferranti, Francesca Romana, De Soccio, Valeria, Vidiri, Antonello, Botta, Francesca, Dominelli, Valeria, Cassano, Enrico, Sorgente, Eugenio, Pecori, Biagio, Cerciello, Vincenzo, Boldrini, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-be3f4630baf44e626bd6f5e79844983280f5cad52c4b9d0e16f4fdc4e137d7253
container_end_page 878
container_issue 6
container_start_page 864
container_title Radiologia medica
container_volume 129
creator Petrillo, Antonella
Fusco, Roberta
Petrosino, Teresa
Vallone, Paolo
Granata, Vincenza
Rubulotta, Maria Rosaria
Pariante, Paolo
Raiano, Nicola
Scognamiglio, Giosuè
Fanizzi, Annarita
Massafra, Raffaella
Lafranceschina, Miria
La Forgia, Daniele
Greco, Laura
Ferranti, Francesca Romana
De Soccio, Valeria
Vidiri, Antonello
Botta, Francesca
Dominelli, Valeria
Cassano, Enrico
Sorgente, Eugenio
Pecori, Biagio
Cerciello, Vincenzo
Boldrini, Luca
description Objective To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. Methods From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 − ; (3) HR + vs. HR − ; and (4) non-luminal vs. luminal A or HR + /HER2−  and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. Results The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. Conclusions The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
doi_str_mv 10.1007/s11547-024-01817-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056669566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067417106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-be3f4630baf44e626bd6f5e79844983280f5cad52c4b9d0e16f4fdc4e137d7253</originalsourceid><addsrcrecordid>eNp9kc2OFSEQhYnROOPoC7gwJG7ctEJDQ_dyMhl_kknc6JrQUNzLpLu5UvSiH8W3lfaOP3HhBqjUd06lOIS85OwtZ0y_Q847qRvWyobxnuumf0Qued-qRg29ePzX-4I8Q7xnTDLOhqfkQvS6q1J9Sb5f03mdSnSwlBwdxbL6jaZAs_UxzdEhtYunNpcYoot2onEpME3xAIuD2rPThhFpWqhL1cJiaWA52tr0dLbznA7Zno4bLYlGX4fEsFEfQ4BcC3qMWFLZToD7zDFD1VO3q_Nz8iTYCeHFw31Fvr6__XLzsbn7_OHTzfVd40SrSjOCCFIJNtogJahWjV6FDvTQS1k3b3sWOmd91zo5Dp4BV0EG7yRwob1uO3FF3px9Tzl9WwGLmSO6uqJdIK1oBOuUUkM9Kvr6H_Q-rbl-wU4pLbnmbKfaM-VyQswQzCnH2ebNcGb24Mw5OFODMz-DM30VvXqwXscZ_G_Jr6QqIM4A1tZygPxn9n9sfwDhKadS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067417106</pqid></control><display><type>article</type><title>A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer</title><source>Springer Link</source><creator>Petrillo, Antonella ; Fusco, Roberta ; Petrosino, Teresa ; Vallone, Paolo ; Granata, Vincenza ; Rubulotta, Maria Rosaria ; Pariante, Paolo ; Raiano, Nicola ; Scognamiglio, Giosuè ; Fanizzi, Annarita ; Massafra, Raffaella ; Lafranceschina, Miria ; La Forgia, Daniele ; Greco, Laura ; Ferranti, Francesca Romana ; De Soccio, Valeria ; Vidiri, Antonello ; Botta, Francesca ; Dominelli, Valeria ; Cassano, Enrico ; Sorgente, Eugenio ; Pecori, Biagio ; Cerciello, Vincenzo ; Boldrini, Luca</creator><creatorcontrib>Petrillo, Antonella ; Fusco, Roberta ; Petrosino, Teresa ; Vallone, Paolo ; Granata, Vincenza ; Rubulotta, Maria Rosaria ; Pariante, Paolo ; Raiano, Nicola ; Scognamiglio, Giosuè ; Fanizzi, Annarita ; Massafra, Raffaella ; Lafranceschina, Miria ; La Forgia, Daniele ; Greco, Laura ; Ferranti, Francesca Romana ; De Soccio, Valeria ; Vidiri, Antonello ; Botta, Francesca ; Dominelli, Valeria ; Cassano, Enrico ; Sorgente, Eugenio ; Pecori, Biagio ; Cerciello, Vincenzo ; Boldrini, Luca</creatorcontrib><description>Objective To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. Methods From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 − ; (3) HR + vs. HR − ; and (4) non-luminal vs. luminal A or HR + /HER2−  and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. Results The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. Conclusions The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-024-01817-8</identifier><identifier>PMID: 38755477</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Accuracy ; Adult ; Aged ; Artificial Intelligence ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Breast Radiology ; Classification ; Contrast Media ; Cranium ; Decision trees ; Diagnostic Radiology ; Female ; Growth factors ; Humans ; Image contrast ; Image enhancement ; Imaging ; Interventional Radiology ; Italy ; Lesions ; Mammography ; Mammography - methods ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multivariate analysis ; Neoplasm Grading ; Neuroradiology ; Performance evaluation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiology ; Radiomics ; Receptor, ErbB-2 ; Receptors ; Regression models ; Sensitivity and Specificity ; Ultrasound</subject><ispartof>Radiologia medica, 2024-06, Vol.129 (6), p.864-878</ispartof><rights>Italian Society of Medical Radiology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Italian Society of Medical Radiology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-be3f4630baf44e626bd6f5e79844983280f5cad52c4b9d0e16f4fdc4e137d7253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38755477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrillo, Antonella</creatorcontrib><creatorcontrib>Fusco, Roberta</creatorcontrib><creatorcontrib>Petrosino, Teresa</creatorcontrib><creatorcontrib>Vallone, Paolo</creatorcontrib><creatorcontrib>Granata, Vincenza</creatorcontrib><creatorcontrib>Rubulotta, Maria Rosaria</creatorcontrib><creatorcontrib>Pariante, Paolo</creatorcontrib><creatorcontrib>Raiano, Nicola</creatorcontrib><creatorcontrib>Scognamiglio, Giosuè</creatorcontrib><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Lafranceschina, Miria</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><creatorcontrib>Greco, Laura</creatorcontrib><creatorcontrib>Ferranti, Francesca Romana</creatorcontrib><creatorcontrib>De Soccio, Valeria</creatorcontrib><creatorcontrib>Vidiri, Antonello</creatorcontrib><creatorcontrib>Botta, Francesca</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><creatorcontrib>Sorgente, Eugenio</creatorcontrib><creatorcontrib>Pecori, Biagio</creatorcontrib><creatorcontrib>Cerciello, Vincenzo</creatorcontrib><creatorcontrib>Boldrini, Luca</creatorcontrib><title>A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Objective To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. Methods From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 − ; (3) HR + vs. HR − ; and (4) non-luminal vs. luminal A or HR + /HER2−  and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. Results The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. Conclusions The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Aged</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Radiology</subject><subject>Classification</subject><subject>Contrast Media</subject><subject>Cranium</subject><subject>Decision trees</subject><subject>Diagnostic Radiology</subject><subject>Female</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Italy</subject><subject>Lesions</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multivariate analysis</subject><subject>Neoplasm Grading</subject><subject>Neuroradiology</subject><subject>Performance evaluation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Receptor, ErbB-2</subject><subject>Receptors</subject><subject>Regression models</subject><subject>Sensitivity and Specificity</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFSEQhYnROOPoC7gwJG7ctEJDQ_dyMhl_kknc6JrQUNzLpLu5UvSiH8W3lfaOP3HhBqjUd06lOIS85OwtZ0y_Q847qRvWyobxnuumf0Qued-qRg29ePzX-4I8Q7xnTDLOhqfkQvS6q1J9Sb5f03mdSnSwlBwdxbL6jaZAs_UxzdEhtYunNpcYoot2onEpME3xAIuD2rPThhFpWqhL1cJiaWA52tr0dLbznA7Zno4bLYlGX4fEsFEfQ4BcC3qMWFLZToD7zDFD1VO3q_Nz8iTYCeHFw31Fvr6__XLzsbn7_OHTzfVd40SrSjOCCFIJNtogJahWjV6FDvTQS1k3b3sWOmd91zo5Dp4BV0EG7yRwob1uO3FF3px9Tzl9WwGLmSO6uqJdIK1oBOuUUkM9Kvr6H_Q-rbl-wU4pLbnmbKfaM-VyQswQzCnH2ebNcGb24Mw5OFODMz-DM30VvXqwXscZ_G_Jr6QqIM4A1tZygPxn9n9sfwDhKadS</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Petrillo, Antonella</creator><creator>Fusco, Roberta</creator><creator>Petrosino, Teresa</creator><creator>Vallone, Paolo</creator><creator>Granata, Vincenza</creator><creator>Rubulotta, Maria Rosaria</creator><creator>Pariante, Paolo</creator><creator>Raiano, Nicola</creator><creator>Scognamiglio, Giosuè</creator><creator>Fanizzi, Annarita</creator><creator>Massafra, Raffaella</creator><creator>Lafranceschina, Miria</creator><creator>La Forgia, Daniele</creator><creator>Greco, Laura</creator><creator>Ferranti, Francesca Romana</creator><creator>De Soccio, Valeria</creator><creator>Vidiri, Antonello</creator><creator>Botta, Francesca</creator><creator>Dominelli, Valeria</creator><creator>Cassano, Enrico</creator><creator>Sorgente, Eugenio</creator><creator>Pecori, Biagio</creator><creator>Cerciello, Vincenzo</creator><creator>Boldrini, Luca</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer</title><author>Petrillo, Antonella ; Fusco, Roberta ; Petrosino, Teresa ; Vallone, Paolo ; Granata, Vincenza ; Rubulotta, Maria Rosaria ; Pariante, Paolo ; Raiano, Nicola ; Scognamiglio, Giosuè ; Fanizzi, Annarita ; Massafra, Raffaella ; Lafranceschina, Miria ; La Forgia, Daniele ; Greco, Laura ; Ferranti, Francesca Romana ; De Soccio, Valeria ; Vidiri, Antonello ; Botta, Francesca ; Dominelli, Valeria ; Cassano, Enrico ; Sorgente, Eugenio ; Pecori, Biagio ; Cerciello, Vincenzo ; Boldrini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-be3f4630baf44e626bd6f5e79844983280f5cad52c4b9d0e16f4fdc4e137d7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Aged</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Radiology</topic><topic>Classification</topic><topic>Contrast Media</topic><topic>Cranium</topic><topic>Decision trees</topic><topic>Diagnostic Radiology</topic><topic>Female</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Italy</topic><topic>Lesions</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multivariate analysis</topic><topic>Neoplasm Grading</topic><topic>Neuroradiology</topic><topic>Performance evaluation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Receptor, ErbB-2</topic><topic>Receptors</topic><topic>Regression models</topic><topic>Sensitivity and Specificity</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrillo, Antonella</creatorcontrib><creatorcontrib>Fusco, Roberta</creatorcontrib><creatorcontrib>Petrosino, Teresa</creatorcontrib><creatorcontrib>Vallone, Paolo</creatorcontrib><creatorcontrib>Granata, Vincenza</creatorcontrib><creatorcontrib>Rubulotta, Maria Rosaria</creatorcontrib><creatorcontrib>Pariante, Paolo</creatorcontrib><creatorcontrib>Raiano, Nicola</creatorcontrib><creatorcontrib>Scognamiglio, Giosuè</creatorcontrib><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Lafranceschina, Miria</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><creatorcontrib>Greco, Laura</creatorcontrib><creatorcontrib>Ferranti, Francesca Romana</creatorcontrib><creatorcontrib>De Soccio, Valeria</creatorcontrib><creatorcontrib>Vidiri, Antonello</creatorcontrib><creatorcontrib>Botta, Francesca</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><creatorcontrib>Sorgente, Eugenio</creatorcontrib><creatorcontrib>Pecori, Biagio</creatorcontrib><creatorcontrib>Cerciello, Vincenzo</creatorcontrib><creatorcontrib>Boldrini, Luca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrillo, Antonella</au><au>Fusco, Roberta</au><au>Petrosino, Teresa</au><au>Vallone, Paolo</au><au>Granata, Vincenza</au><au>Rubulotta, Maria Rosaria</au><au>Pariante, Paolo</au><au>Raiano, Nicola</au><au>Scognamiglio, Giosuè</au><au>Fanizzi, Annarita</au><au>Massafra, Raffaella</au><au>Lafranceschina, Miria</au><au>La Forgia, Daniele</au><au>Greco, Laura</au><au>Ferranti, Francesca Romana</au><au>De Soccio, Valeria</au><au>Vidiri, Antonello</au><au>Botta, Francesca</au><au>Dominelli, Valeria</au><au>Cassano, Enrico</au><au>Sorgente, Eugenio</au><au>Pecori, Biagio</au><au>Cerciello, Vincenzo</au><au>Boldrini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>129</volume><issue>6</issue><spage>864</spage><epage>878</epage><pages>864-878</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Objective To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. Methods From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 − ; (3) HR + vs. HR − ; and (4) non-luminal vs. luminal A or HR + /HER2−  and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. Results The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. Conclusions The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>38755477</pmid><doi>10.1007/s11547-024-01817-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1826-6983
ispartof Radiologia medica, 2024-06, Vol.129 (6), p.864-878
issn 1826-6983
0033-8362
1826-6983
language eng
recordid cdi_proquest_miscellaneous_3056669566
source Springer Link
subjects Accuracy
Adult
Aged
Artificial Intelligence
Breast cancer
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Breast Radiology
Classification
Contrast Media
Cranium
Decision trees
Diagnostic Radiology
Female
Growth factors
Humans
Image contrast
Image enhancement
Imaging
Interventional Radiology
Italy
Lesions
Mammography
Mammography - methods
Medicine
Medicine & Public Health
Middle Aged
Multivariate analysis
Neoplasm Grading
Neuroradiology
Performance evaluation
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Radiomics
Receptor, ErbB-2
Receptors
Regression models
Sensitivity and Specificity
Ultrasound
title A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multicentric%20study%20of%20radiomics%20and%20artificial%20intelligence%20analysis%20on%20contrast-enhanced%20mammography%20to%20identify%20different%20histotypes%20of%20breast%20cancer&rft.jtitle=Radiologia%20medica&rft.au=Petrillo,%20Antonella&rft.date=2024-06-01&rft.volume=129&rft.issue=6&rft.spage=864&rft.epage=878&rft.pages=864-878&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-024-01817-8&rft_dat=%3Cproquest_cross%3E3067417106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-be3f4630baf44e626bd6f5e79844983280f5cad52c4b9d0e16f4fdc4e137d7253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067417106&rft_id=info:pmid/38755477&rfr_iscdi=true