Loading…

Disentangling effort from probability of success: Temporal dynamics of frontal midline theta in effort-based reward processing

The ability to weigh a reward against the effort required to acquire it is critical for decision-making. However, extant experimental paradigms oftentimes confound increased effort demand with decreased reward probability, thereby obscuring neural correlates underlying these cognitive processes. To...

Full description

Saved in:
Bibliographic Details
Published in:Cortex 2024-07, Vol.176, p.94-112
Main Authors: Lopez-Gamundi, Paula, Mas-Herrero, Ernest, Marco-Pallares, Josep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to weigh a reward against the effort required to acquire it is critical for decision-making. However, extant experimental paradigms oftentimes confound increased effort demand with decreased reward probability, thereby obscuring neural correlates underlying these cognitive processes. To resolve this issue, we designed novel tasks that disentangled probability of success – and therefore reward probability – from effort demand. In Experiment 1, reward magnitude and effort demand were varied while reward probability was kept constant. In Experiment 2, effort demand and reward probability were varied while reward magnitude remained fixed. Electroencephalogram (EEG) data was recorded to explore how frontal midline theta (FMT; an electrophysiological index of mPFC function) and component P3 (an index of incentive salience) respond to effort demand, and reward magnitude and probability. We found no evidence that FMT tracked effort demands or net value during cue evaluation. At feedback, however, FMT power was enhanced for high compared to low effort trials, but not modulated by reward magnitude or probability. Conversely, P3 was sensitive to reward magnitude and probability at both cue and feedback phases and only integrated expended effort costs at feedback, such that P3 amplitudes continued to scale with reward magnitude and probability but were also increased for high compared to low effort reward feedback. These findings suggest that, when likelihood of success is equal, FMT power does not track net value of prospective effort-based rewards. Instead, expended cognitive effort potentiates FMT power and enhances the saliency of rewards at feedback. The way the brain weighs rewards against the effort required to achieve them is critical for understanding motivational disorders. Current paradigms confound increased effort demand with decreased reward probability, making it difficult to disentangle neural activity associated with effort costs from those associated with reward likelihood. Here, we explored the temporal dynamics of effort-based reward (via frontal midline theta (FMT) and component P3) while participants underwent a novel paradigm that kept probability of reward constant between mental effort demand conditions. Our findings suggest that the FMT does not track net value and that expended effort enhances, instead of attenuates, the saliency of rewards.
ISSN:0010-9452
1973-8102
DOI:10.1016/j.cortex.2024.03.014