Loading…

Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation

Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delin...

Full description

Saved in:
Bibliographic Details
Published in:Neuro-oncology (Charlottesville, Va.) Va.), 2024-09, Vol.26 (9), p.1557-1571
Main Authors: Familiar, Ariana M, Fathi Kazerooni, Anahita, Vossough, Arastoo, Ware, Jeffrey B, Bagheri, Sina, Khalili, Nastaran, Anderson, Hannah, Haldar, Debanjan, Storm, Phillip B, Resnick, Adam C, Kann, Benjamin H, Aboian, Mariam, Kline, Cassie, Weller, Michael, Huang, Raymond Y, Chang, Susan M, Fangusaro, Jason R, Hoffman, Lindsey M, Mueller, Sabine, Prados, Michael, Nabavizadeh, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623
container_end_page 1571
container_issue 9
container_start_page 1557
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 26
creator Familiar, Ariana M
Fathi Kazerooni, Anahita
Vossough, Arastoo
Ware, Jeffrey B
Bagheri, Sina
Khalili, Nastaran
Anderson, Hannah
Haldar, Debanjan
Storm, Phillip B
Resnick, Adam C
Kann, Benjamin H
Aboian, Mariam
Kline, Cassie
Weller, Michael
Huang, Raymond Y
Chang, Susan M
Fangusaro, Jason R
Hoffman, Lindsey M
Mueller, Sabine
Prados, Michael
Nabavizadeh, Ali
description Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.
doi_str_mv 10.1093/neuonc/noae093
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057692238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/neuonc/noae093</oup_id><sourcerecordid>3057692238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVpiNMk1x6Djg1kHUlrade9BdO0BUMuyXnRSiNbYVdyNVqC_0N_dOTa7bWHQTPw5hvxHiGfOZtztqzvA0wxmPsQNZTxA7ngUtSVbJX6-KcXVSt5MyOfEF8ZE1wqfk5mdduoJRPigvx-jm86WaQmBvSYIZg99YHuwHqdkze0T7rMeRpjoiNonBKMEDJ-pautHgYIG8A7inGYsi-MO6qDpXkLNMUBaHRUp-ydN14PBZxhGPymXIGq1wiWImwOOH1YviJnTg8I16f3krw8fnte_ajWT99_rh7WlRF8kSvhuGOct6qUk8CUdD1TDmTPFly4he2tU23daLVcOtvUzEBxxy60kA0IJepL8uXI3aX4awLM3ejRlJ_pAHHCrmay-CNE3Rbp_Cg1KSImcN0u-VGnfcdZd0igOybQnRIoCzcn9tSPYP_J_1peBLdHQZx2_4O9AyBblgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057692238</pqid></control><display><type>article</type><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</creator><creatorcontrib>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</creatorcontrib><description>Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</description><identifier>ISSN: 1522-8517</identifier><identifier>ISSN: 1523-5866</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noae093</identifier><identifier>PMID: 38769022</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Artificial Intelligence ; Brain Neoplasms - diagnosis ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Child ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2024-09, Vol.26 (9), p.1557-1571</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</cites><orcidid>0000-0002-9630-2075 ; 0000-0001-7765-7690 ; 0000-0002-1748-174X ; 0000-0002-9315-8653 ; 0000-0002-0380-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38769022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Familiar, Ariana M</creatorcontrib><creatorcontrib>Fathi Kazerooni, Anahita</creatorcontrib><creatorcontrib>Vossough, Arastoo</creatorcontrib><creatorcontrib>Ware, Jeffrey B</creatorcontrib><creatorcontrib>Bagheri, Sina</creatorcontrib><creatorcontrib>Khalili, Nastaran</creatorcontrib><creatorcontrib>Anderson, Hannah</creatorcontrib><creatorcontrib>Haldar, Debanjan</creatorcontrib><creatorcontrib>Storm, Phillip B</creatorcontrib><creatorcontrib>Resnick, Adam C</creatorcontrib><creatorcontrib>Kann, Benjamin H</creatorcontrib><creatorcontrib>Aboian, Mariam</creatorcontrib><creatorcontrib>Kline, Cassie</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Huang, Raymond Y</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Fangusaro, Jason R</creatorcontrib><creatorcontrib>Hoffman, Lindsey M</creatorcontrib><creatorcontrib>Mueller, Sabine</creatorcontrib><creatorcontrib>Prados, Michael</creatorcontrib><creatorcontrib>Nabavizadeh, Ali</creatorcontrib><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><title>Neuro-oncology (Charlottesville, Va.)</title><addtitle>Neuro Oncol</addtitle><description>Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</description><subject>Artificial Intelligence</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Child</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>1522-8517</issn><issn>1523-5866</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrGzEQhUVpiNMk1x6Djg1kHUlrade9BdO0BUMuyXnRSiNbYVdyNVqC_0N_dOTa7bWHQTPw5hvxHiGfOZtztqzvA0wxmPsQNZTxA7ngUtSVbJX6-KcXVSt5MyOfEF8ZE1wqfk5mdduoJRPigvx-jm86WaQmBvSYIZg99YHuwHqdkze0T7rMeRpjoiNonBKMEDJ-pautHgYIG8A7inGYsi-MO6qDpXkLNMUBaHRUp-ydN14PBZxhGPymXIGq1wiWImwOOH1YviJnTg8I16f3krw8fnte_ajWT99_rh7WlRF8kSvhuGOct6qUk8CUdD1TDmTPFly4he2tU23daLVcOtvUzEBxxy60kA0IJepL8uXI3aX4awLM3ejRlJ_pAHHCrmay-CNE3Rbp_Cg1KSImcN0u-VGnfcdZd0igOybQnRIoCzcn9tSPYP_J_1peBLdHQZx2_4O9AyBblgs</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Familiar, Ariana M</creator><creator>Fathi Kazerooni, Anahita</creator><creator>Vossough, Arastoo</creator><creator>Ware, Jeffrey B</creator><creator>Bagheri, Sina</creator><creator>Khalili, Nastaran</creator><creator>Anderson, Hannah</creator><creator>Haldar, Debanjan</creator><creator>Storm, Phillip B</creator><creator>Resnick, Adam C</creator><creator>Kann, Benjamin H</creator><creator>Aboian, Mariam</creator><creator>Kline, Cassie</creator><creator>Weller, Michael</creator><creator>Huang, Raymond Y</creator><creator>Chang, Susan M</creator><creator>Fangusaro, Jason R</creator><creator>Hoffman, Lindsey M</creator><creator>Mueller, Sabine</creator><creator>Prados, Michael</creator><creator>Nabavizadeh, Ali</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9630-2075</orcidid><orcidid>https://orcid.org/0000-0001-7765-7690</orcidid><orcidid>https://orcid.org/0000-0002-1748-174X</orcidid><orcidid>https://orcid.org/0000-0002-9315-8653</orcidid><orcidid>https://orcid.org/0000-0002-0380-4552</orcidid></search><sort><creationdate>20240905</creationdate><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><author>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Child</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Familiar, Ariana M</creatorcontrib><creatorcontrib>Fathi Kazerooni, Anahita</creatorcontrib><creatorcontrib>Vossough, Arastoo</creatorcontrib><creatorcontrib>Ware, Jeffrey B</creatorcontrib><creatorcontrib>Bagheri, Sina</creatorcontrib><creatorcontrib>Khalili, Nastaran</creatorcontrib><creatorcontrib>Anderson, Hannah</creatorcontrib><creatorcontrib>Haldar, Debanjan</creatorcontrib><creatorcontrib>Storm, Phillip B</creatorcontrib><creatorcontrib>Resnick, Adam C</creatorcontrib><creatorcontrib>Kann, Benjamin H</creatorcontrib><creatorcontrib>Aboian, Mariam</creatorcontrib><creatorcontrib>Kline, Cassie</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Huang, Raymond Y</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Fangusaro, Jason R</creatorcontrib><creatorcontrib>Hoffman, Lindsey M</creatorcontrib><creatorcontrib>Mueller, Sabine</creatorcontrib><creatorcontrib>Prados, Michael</creatorcontrib><creatorcontrib>Nabavizadeh, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Familiar, Ariana M</au><au>Fathi Kazerooni, Anahita</au><au>Vossough, Arastoo</au><au>Ware, Jeffrey B</au><au>Bagheri, Sina</au><au>Khalili, Nastaran</au><au>Anderson, Hannah</au><au>Haldar, Debanjan</au><au>Storm, Phillip B</au><au>Resnick, Adam C</au><au>Kann, Benjamin H</au><au>Aboian, Mariam</au><au>Kline, Cassie</au><au>Weller, Michael</au><au>Huang, Raymond Y</au><au>Chang, Susan M</au><au>Fangusaro, Jason R</au><au>Hoffman, Lindsey M</au><au>Mueller, Sabine</au><au>Prados, Michael</au><au>Nabavizadeh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><addtitle>Neuro Oncol</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>26</volume><issue>9</issue><spage>1557</spage><epage>1571</epage><pages>1557-1571</pages><issn>1522-8517</issn><issn>1523-5866</issn><eissn>1523-5866</eissn><abstract>Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38769022</pmid><doi>10.1093/neuonc/noae093</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9630-2075</orcidid><orcidid>https://orcid.org/0000-0001-7765-7690</orcidid><orcidid>https://orcid.org/0000-0002-1748-174X</orcidid><orcidid>https://orcid.org/0000-0002-9315-8653</orcidid><orcidid>https://orcid.org/0000-0002-0380-4552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2024-09, Vol.26 (9), p.1557-1571
issn 1522-8517
1523-5866
1523-5866
language eng
recordid cdi_proquest_miscellaneous_3057692238
source Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Artificial Intelligence
Brain Neoplasms - diagnosis
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Child
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
title Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20consistency%20in%20pediatric%20brain%20tumor%20measurements:%20Challenges,%20solutions,%20and%20the%20role%20of%20artificial%20intelligence-based%20segmentation&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Familiar,%20Ariana%20M&rft.date=2024-09-05&rft.volume=26&rft.issue=9&rft.spage=1557&rft.epage=1571&rft.pages=1557-1571&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noae093&rft_dat=%3Cproquest_cross%3E3057692238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057692238&rft_id=info:pmid/38769022&rft_oup_id=10.1093/neuonc/noae093&rfr_iscdi=true