Loading…
Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation
Abstract MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delin...
Saved in:
Published in: | Neuro-oncology (Charlottesville, Va.) Va.), 2024-09, Vol.26 (9), p.1557-1571 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623 |
container_end_page | 1571 |
container_issue | 9 |
container_start_page | 1557 |
container_title | Neuro-oncology (Charlottesville, Va.) |
container_volume | 26 |
creator | Familiar, Ariana M Fathi Kazerooni, Anahita Vossough, Arastoo Ware, Jeffrey B Bagheri, Sina Khalili, Nastaran Anderson, Hannah Haldar, Debanjan Storm, Phillip B Resnick, Adam C Kann, Benjamin H Aboian, Mariam Kline, Cassie Weller, Michael Huang, Raymond Y Chang, Susan M Fangusaro, Jason R Hoffman, Lindsey M Mueller, Sabine Prados, Michael Nabavizadeh, Ali |
description | Abstract
MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies. |
doi_str_mv | 10.1093/neuonc/noae093 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057692238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/neuonc/noae093</oup_id><sourcerecordid>3057692238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVpiNMk1x6Djg1kHUlrade9BdO0BUMuyXnRSiNbYVdyNVqC_0N_dOTa7bWHQTPw5hvxHiGfOZtztqzvA0wxmPsQNZTxA7ngUtSVbJX6-KcXVSt5MyOfEF8ZE1wqfk5mdduoJRPigvx-jm86WaQmBvSYIZg99YHuwHqdkze0T7rMeRpjoiNonBKMEDJ-pautHgYIG8A7inGYsi-MO6qDpXkLNMUBaHRUp-ydN14PBZxhGPymXIGq1wiWImwOOH1YviJnTg8I16f3krw8fnte_ajWT99_rh7WlRF8kSvhuGOct6qUk8CUdD1TDmTPFly4he2tU23daLVcOtvUzEBxxy60kA0IJepL8uXI3aX4awLM3ejRlJ_pAHHCrmay-CNE3Rbp_Cg1KSImcN0u-VGnfcdZd0igOybQnRIoCzcn9tSPYP_J_1peBLdHQZx2_4O9AyBblgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057692238</pqid></control><display><type>article</type><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</creator><creatorcontrib>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</creatorcontrib><description>Abstract
MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</description><identifier>ISSN: 1522-8517</identifier><identifier>ISSN: 1523-5866</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noae093</identifier><identifier>PMID: 38769022</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Artificial Intelligence ; Brain Neoplasms - diagnosis ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Child ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2024-09, Vol.26 (9), p.1557-1571</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</cites><orcidid>0000-0002-9630-2075 ; 0000-0001-7765-7690 ; 0000-0002-1748-174X ; 0000-0002-9315-8653 ; 0000-0002-0380-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38769022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Familiar, Ariana M</creatorcontrib><creatorcontrib>Fathi Kazerooni, Anahita</creatorcontrib><creatorcontrib>Vossough, Arastoo</creatorcontrib><creatorcontrib>Ware, Jeffrey B</creatorcontrib><creatorcontrib>Bagheri, Sina</creatorcontrib><creatorcontrib>Khalili, Nastaran</creatorcontrib><creatorcontrib>Anderson, Hannah</creatorcontrib><creatorcontrib>Haldar, Debanjan</creatorcontrib><creatorcontrib>Storm, Phillip B</creatorcontrib><creatorcontrib>Resnick, Adam C</creatorcontrib><creatorcontrib>Kann, Benjamin H</creatorcontrib><creatorcontrib>Aboian, Mariam</creatorcontrib><creatorcontrib>Kline, Cassie</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Huang, Raymond Y</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Fangusaro, Jason R</creatorcontrib><creatorcontrib>Hoffman, Lindsey M</creatorcontrib><creatorcontrib>Mueller, Sabine</creatorcontrib><creatorcontrib>Prados, Michael</creatorcontrib><creatorcontrib>Nabavizadeh, Ali</creatorcontrib><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><title>Neuro-oncology (Charlottesville, Va.)</title><addtitle>Neuro Oncol</addtitle><description>Abstract
MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</description><subject>Artificial Intelligence</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Child</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>1522-8517</issn><issn>1523-5866</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrGzEQhUVpiNMk1x6Djg1kHUlrade9BdO0BUMuyXnRSiNbYVdyNVqC_0N_dOTa7bWHQTPw5hvxHiGfOZtztqzvA0wxmPsQNZTxA7ngUtSVbJX6-KcXVSt5MyOfEF8ZE1wqfk5mdduoJRPigvx-jm86WaQmBvSYIZg99YHuwHqdkze0T7rMeRpjoiNonBKMEDJ-pautHgYIG8A7inGYsi-MO6qDpXkLNMUBaHRUp-ydN14PBZxhGPymXIGq1wiWImwOOH1YviJnTg8I16f3krw8fnte_ajWT99_rh7WlRF8kSvhuGOct6qUk8CUdD1TDmTPFly4he2tU23daLVcOtvUzEBxxy60kA0IJepL8uXI3aX4awLM3ejRlJ_pAHHCrmay-CNE3Rbp_Cg1KSImcN0u-VGnfcdZd0igOybQnRIoCzcn9tSPYP_J_1peBLdHQZx2_4O9AyBblgs</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Familiar, Ariana M</creator><creator>Fathi Kazerooni, Anahita</creator><creator>Vossough, Arastoo</creator><creator>Ware, Jeffrey B</creator><creator>Bagheri, Sina</creator><creator>Khalili, Nastaran</creator><creator>Anderson, Hannah</creator><creator>Haldar, Debanjan</creator><creator>Storm, Phillip B</creator><creator>Resnick, Adam C</creator><creator>Kann, Benjamin H</creator><creator>Aboian, Mariam</creator><creator>Kline, Cassie</creator><creator>Weller, Michael</creator><creator>Huang, Raymond Y</creator><creator>Chang, Susan M</creator><creator>Fangusaro, Jason R</creator><creator>Hoffman, Lindsey M</creator><creator>Mueller, Sabine</creator><creator>Prados, Michael</creator><creator>Nabavizadeh, Ali</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9630-2075</orcidid><orcidid>https://orcid.org/0000-0001-7765-7690</orcidid><orcidid>https://orcid.org/0000-0002-1748-174X</orcidid><orcidid>https://orcid.org/0000-0002-9315-8653</orcidid><orcidid>https://orcid.org/0000-0002-0380-4552</orcidid></search><sort><creationdate>20240905</creationdate><title>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</title><author>Familiar, Ariana M ; Fathi Kazerooni, Anahita ; Vossough, Arastoo ; Ware, Jeffrey B ; Bagheri, Sina ; Khalili, Nastaran ; Anderson, Hannah ; Haldar, Debanjan ; Storm, Phillip B ; Resnick, Adam C ; Kann, Benjamin H ; Aboian, Mariam ; Kline, Cassie ; Weller, Michael ; Huang, Raymond Y ; Chang, Susan M ; Fangusaro, Jason R ; Hoffman, Lindsey M ; Mueller, Sabine ; Prados, Michael ; Nabavizadeh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Child</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Familiar, Ariana M</creatorcontrib><creatorcontrib>Fathi Kazerooni, Anahita</creatorcontrib><creatorcontrib>Vossough, Arastoo</creatorcontrib><creatorcontrib>Ware, Jeffrey B</creatorcontrib><creatorcontrib>Bagheri, Sina</creatorcontrib><creatorcontrib>Khalili, Nastaran</creatorcontrib><creatorcontrib>Anderson, Hannah</creatorcontrib><creatorcontrib>Haldar, Debanjan</creatorcontrib><creatorcontrib>Storm, Phillip B</creatorcontrib><creatorcontrib>Resnick, Adam C</creatorcontrib><creatorcontrib>Kann, Benjamin H</creatorcontrib><creatorcontrib>Aboian, Mariam</creatorcontrib><creatorcontrib>Kline, Cassie</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Huang, Raymond Y</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Fangusaro, Jason R</creatorcontrib><creatorcontrib>Hoffman, Lindsey M</creatorcontrib><creatorcontrib>Mueller, Sabine</creatorcontrib><creatorcontrib>Prados, Michael</creatorcontrib><creatorcontrib>Nabavizadeh, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Familiar, Ariana M</au><au>Fathi Kazerooni, Anahita</au><au>Vossough, Arastoo</au><au>Ware, Jeffrey B</au><au>Bagheri, Sina</au><au>Khalili, Nastaran</au><au>Anderson, Hannah</au><au>Haldar, Debanjan</au><au>Storm, Phillip B</au><au>Resnick, Adam C</au><au>Kann, Benjamin H</au><au>Aboian, Mariam</au><au>Kline, Cassie</au><au>Weller, Michael</au><au>Huang, Raymond Y</au><au>Chang, Susan M</au><au>Fangusaro, Jason R</au><au>Hoffman, Lindsey M</au><au>Mueller, Sabine</au><au>Prados, Michael</au><au>Nabavizadeh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><addtitle>Neuro Oncol</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>26</volume><issue>9</issue><spage>1557</spage><epage>1571</epage><pages>1557-1571</pages><issn>1522-8517</issn><issn>1523-5866</issn><eissn>1523-5866</eissn><abstract>Abstract
MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38769022</pmid><doi>10.1093/neuonc/noae093</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9630-2075</orcidid><orcidid>https://orcid.org/0000-0001-7765-7690</orcidid><orcidid>https://orcid.org/0000-0002-1748-174X</orcidid><orcidid>https://orcid.org/0000-0002-9315-8653</orcidid><orcidid>https://orcid.org/0000-0002-0380-4552</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-8517 |
ispartof | Neuro-oncology (Charlottesville, Va.), 2024-09, Vol.26 (9), p.1557-1571 |
issn | 1522-8517 1523-5866 1523-5866 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057692238 |
source | Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
subjects | Artificial Intelligence Brain Neoplasms - diagnosis Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Child Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods |
title | Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20consistency%20in%20pediatric%20brain%20tumor%20measurements:%20Challenges,%20solutions,%20and%20the%20role%20of%20artificial%20intelligence-based%20segmentation&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Familiar,%20Ariana%20M&rft.date=2024-09-05&rft.volume=26&rft.issue=9&rft.spage=1557&rft.epage=1571&rft.pages=1557-1571&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noae093&rft_dat=%3Cproquest_cross%3E3057692238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c214t-2f1f01186118f5e065fb06fe5b0412f4dbdf6837a699fd730ceae0d4a257e2623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057692238&rft_id=info:pmid/38769022&rft_oup_id=10.1093/neuonc/noae093&rfr_iscdi=true |