Loading…

Boosting Sinh Cosh Optimizer and arithmetic optimization algorithm for improved prediction of biological activities for indoloquinoline derivatives

Quantitative Structure Activity Relation (QSAR) models are mathematical techniques used to link structural characteristics with biological activities, thus considered a useful tool in drug discovery, hazard evaluation, and identifying potentially lethal molecules. The QSAR regulations are determined...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2024-07, Vol.359, p.142362-142362, Article 142362
Main Authors: Ibrahim, Rehab Ali, Aly Saad Aly, Mohamed, Moemen, Yasmine S., El Tantawy El Sayed, Ibrahim, Abd Elaziz, Mohamed, Khalil, Hassan Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative Structure Activity Relation (QSAR) models are mathematical techniques used to link structural characteristics with biological activities, thus considered a useful tool in drug discovery, hazard evaluation, and identifying potentially lethal molecules. The QSAR regulations are determined by the Organization for Economic Cooperation and Development (OECD). QSAR models are helpful in discovering new drugs and chemicals to treat severe diseases. In order to improve the QSAR model's predictive power for biological activities of naturally occurring indoloquinoline derivatives against different cancer cell lines, a modified machine learning (ML) technique is presented in this paper. The Arithmetic Optimization Algorithm (AOA) operators are used in the suggested model to enhance the performance of the Sinh Cosh Optimizer (SCHO). Moreover, this improvement functions as a feature selection method that eliminates superfluous descriptors. An actual dataset gathered from previously published research is utilized to evaluate the performance of the suggested model. Moreover, a comparison is made between the outcomes of the suggested model and other established methodologies. In terms of pIC50 values for different indoloquinoline derivatives against human MV4-11 (leukemia), human HCT116 (colon cancer), and human A549 (lung cancer) cell lines, the suggested model achieves root mean square error (RMSE) of 0.6822, 0.6787, 0.4411, and 0.4477, respectively. The biological application of indoloquinoline derivatives as possible anticancer medicines is predicted with a high degree of accuracy by the suggested model, as evidenced by these findings. [Display omitted] •The primary contributions of this work can be summed up as follows:•Modified Sinh Cosh Optimizer (SCO)-QSAR model to predict pIC50 values for various cells.•Improve the performance of SCO using Arithmetic Optimization Algorithm operators.•Assess the efficiency of the developed model using real-world QSAR datasets.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2024.142362