Loading…

Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries

Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its prac...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2403136-n/a
Main Authors: Wang, Yahui, Wang, Xinran, Zhang, Anqi, Han, Xiaomin, Yang, Jingjing, Chen, Wenxing, Zhao, Ran, Wu, Chuan, Bai, Ying
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 38
container_start_page e2403136
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Wang, Yahui
Wang, Xinran
Zhang, Anqi
Han, Xiaomin
Yang, Jingjing
Chen, Wenxing
Zhao, Ran
Wu, Chuan
Bai, Ying
description Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs. Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.
doi_str_mv 10.1002/smll.202403136
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057693582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057693582</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13</originalsourceid><addsrcrecordid>eNpdkc1OAjEQxzdGExG9em7ixQvYj93u9qhEwQQCCXjh0nRLly0pLba7Mdx8AuMz-iSWYDh4mc_fTCbzT5JbBPsIQvwQtsb0McQpJIjQs6SDKCI9WmB2fooRvEyuQtjAyOA07yRfi9ZaZbRdg5l3jbNgGF1TtyGAhRc2VMqDQS0OUADlHoz2K-92tTZa_nx-L7WVMXOllmCkGuWdttFWQiowr7Uyq8Pmynkw0us6Dsxi0_mtsBFY2liY2CkGT6KJU1qF6-SiEiaomz_fTd5enheDUW88Hb4OHse9HaaU9gpZScEoqlJJaFkWgqICC5bHN6RZVgqlKBQZFriUkGGVshznsZAVK8IwKxHpJvfHvTvv3lsVGr7VQSpjhFWuDZzALKeMZAWO6N0_dONab-N1nKD4xIykNI0UO1If2qg933m9FX7PEeQHbfhBG37Shs8n4_EpI78_pIoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453464</pqid></control><display><type>article</type><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</creator><creatorcontrib>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</creatorcontrib><description>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs. Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403136</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous zinc‐ion batteries ; Atomic structure ; Channels ; Degradation ; Diffusion rate ; Electrode materials ; grotthuss transfer ; Hydrophilicity ; Insertion ; Interface stability ; Kinetics ; Low currents ; Manganese dioxide ; Oxygen enrichment ; oxygen vacancy ; proton intercalation ; Protons ; Shielding</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2403136-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3878-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yahui</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Han, Xiaomin</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs. Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</description><subject>aqueous zinc‐ion batteries</subject><subject>Atomic structure</subject><subject>Channels</subject><subject>Degradation</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>grotthuss transfer</subject><subject>Hydrophilicity</subject><subject>Insertion</subject><subject>Interface stability</subject><subject>Kinetics</subject><subject>Low currents</subject><subject>Manganese dioxide</subject><subject>Oxygen enrichment</subject><subject>oxygen vacancy</subject><subject>proton intercalation</subject><subject>Protons</subject><subject>Shielding</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OAjEQxzdGExG9em7ixQvYj93u9qhEwQQCCXjh0nRLly0pLba7Mdx8AuMz-iSWYDh4mc_fTCbzT5JbBPsIQvwQtsb0McQpJIjQs6SDKCI9WmB2fooRvEyuQtjAyOA07yRfi9ZaZbRdg5l3jbNgGF1TtyGAhRc2VMqDQS0OUADlHoz2K-92tTZa_nx-L7WVMXOllmCkGuWdttFWQiowr7Uyq8Pmynkw0us6Dsxi0_mtsBFY2liY2CkGT6KJU1qF6-SiEiaomz_fTd5enheDUW88Hb4OHse9HaaU9gpZScEoqlJJaFkWgqICC5bHN6RZVgqlKBQZFriUkGGVshznsZAVK8IwKxHpJvfHvTvv3lsVGr7VQSpjhFWuDZzALKeMZAWO6N0_dONab-N1nKD4xIykNI0UO1If2qg933m9FX7PEeQHbfhBG37Shs8n4_EpI78_pIoT</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Yahui</creator><creator>Wang, Xinran</creator><creator>Zhang, Anqi</creator><creator>Han, Xiaomin</creator><creator>Yang, Jingjing</creator><creator>Chen, Wenxing</creator><creator>Zhao, Ran</creator><creator>Wu, Chuan</creator><creator>Bai, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></search><sort><creationdate>20240901</creationdate><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><author>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aqueous zinc‐ion batteries</topic><topic>Atomic structure</topic><topic>Channels</topic><topic>Degradation</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>grotthuss transfer</topic><topic>Hydrophilicity</topic><topic>Insertion</topic><topic>Interface stability</topic><topic>Kinetics</topic><topic>Low currents</topic><topic>Manganese dioxide</topic><topic>Oxygen enrichment</topic><topic>oxygen vacancy</topic><topic>proton intercalation</topic><topic>Protons</topic><topic>Shielding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yahui</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Han, Xiaomin</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yahui</au><au>Wang, Xinran</au><au>Zhang, Anqi</au><au>Han, Xiaomin</au><au>Yang, Jingjing</au><au>Chen, Wenxing</au><au>Zhao, Ran</au><au>Wu, Chuan</au><au>Bai, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2403136</spage><epage>n/a</epage><pages>e2403136-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs. Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202403136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2403136-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3057693582
source Wiley-Blackwell Read & Publish Collection
subjects aqueous zinc‐ion batteries
Atomic structure
Channels
Degradation
Diffusion rate
Electrode materials
grotthuss transfer
Hydrophilicity
Insertion
Interface stability
Kinetics
Low currents
Manganese dioxide
Oxygen enrichment
oxygen vacancy
proton intercalation
Protons
Shielding
title Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20Proton%20Grotthuss%20Transfer%20Channels%20by%20Hydrophilic%E2%80%90Zincophobic%20Heterointerface%20Shielding%20for%20High%E2%80%90Performance%20Zn%E2%80%90MnO2%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Yahui&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2403136&rft.epage=n/a&rft.pages=e2403136-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403136&rft_dat=%3Cproquest_wiley%3E3057693582%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112453464&rft_id=info:pmid/&rfr_iscdi=true