Loading…
Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries
Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its prac...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2403136-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 38 |
container_start_page | e2403136 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Wang, Yahui Wang, Xinran Zhang, Anqi Han, Xiaomin Yang, Jingjing Chen, Wenxing Zhao, Ran Wu, Chuan Bai, Ying |
description | Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs.
Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries. |
doi_str_mv | 10.1002/smll.202403136 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057693582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057693582</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13</originalsourceid><addsrcrecordid>eNpdkc1OAjEQxzdGExG9em7ixQvYj93u9qhEwQQCCXjh0nRLly0pLba7Mdx8AuMz-iSWYDh4mc_fTCbzT5JbBPsIQvwQtsb0McQpJIjQs6SDKCI9WmB2fooRvEyuQtjAyOA07yRfi9ZaZbRdg5l3jbNgGF1TtyGAhRc2VMqDQS0OUADlHoz2K-92tTZa_nx-L7WVMXOllmCkGuWdttFWQiowr7Uyq8Pmynkw0us6Dsxi0_mtsBFY2liY2CkGT6KJU1qF6-SiEiaomz_fTd5enheDUW88Hb4OHse9HaaU9gpZScEoqlJJaFkWgqICC5bHN6RZVgqlKBQZFriUkGGVshznsZAVK8IwKxHpJvfHvTvv3lsVGr7VQSpjhFWuDZzALKeMZAWO6N0_dONab-N1nKD4xIykNI0UO1If2qg933m9FX7PEeQHbfhBG37Shs8n4_EpI78_pIoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453464</pqid></control><display><type>article</type><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</creator><creatorcontrib>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</creatorcontrib><description>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs.
Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403136</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous zinc‐ion batteries ; Atomic structure ; Channels ; Degradation ; Diffusion rate ; Electrode materials ; grotthuss transfer ; Hydrophilicity ; Insertion ; Interface stability ; Kinetics ; Low currents ; Manganese dioxide ; Oxygen enrichment ; oxygen vacancy ; proton intercalation ; Protons ; Shielding</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2403136-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3878-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yahui</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Han, Xiaomin</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs.
Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</description><subject>aqueous zinc‐ion batteries</subject><subject>Atomic structure</subject><subject>Channels</subject><subject>Degradation</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>grotthuss transfer</subject><subject>Hydrophilicity</subject><subject>Insertion</subject><subject>Interface stability</subject><subject>Kinetics</subject><subject>Low currents</subject><subject>Manganese dioxide</subject><subject>Oxygen enrichment</subject><subject>oxygen vacancy</subject><subject>proton intercalation</subject><subject>Protons</subject><subject>Shielding</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OAjEQxzdGExG9em7ixQvYj93u9qhEwQQCCXjh0nRLly0pLba7Mdx8AuMz-iSWYDh4mc_fTCbzT5JbBPsIQvwQtsb0McQpJIjQs6SDKCI9WmB2fooRvEyuQtjAyOA07yRfi9ZaZbRdg5l3jbNgGF1TtyGAhRc2VMqDQS0OUADlHoz2K-92tTZa_nx-L7WVMXOllmCkGuWdttFWQiowr7Uyq8Pmynkw0us6Dsxi0_mtsBFY2liY2CkGT6KJU1qF6-SiEiaomz_fTd5enheDUW88Hb4OHse9HaaU9gpZScEoqlJJaFkWgqICC5bHN6RZVgqlKBQZFriUkGGVshznsZAVK8IwKxHpJvfHvTvv3lsVGr7VQSpjhFWuDZzALKeMZAWO6N0_dONab-N1nKD4xIykNI0UO1If2qg933m9FX7PEeQHbfhBG37Shs8n4_EpI78_pIoT</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Yahui</creator><creator>Wang, Xinran</creator><creator>Zhang, Anqi</creator><creator>Han, Xiaomin</creator><creator>Yang, Jingjing</creator><creator>Chen, Wenxing</creator><creator>Zhao, Ran</creator><creator>Wu, Chuan</creator><creator>Bai, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></search><sort><creationdate>20240901</creationdate><title>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</title><author>Wang, Yahui ; Wang, Xinran ; Zhang, Anqi ; Han, Xiaomin ; Yang, Jingjing ; Chen, Wenxing ; Zhao, Ran ; Wu, Chuan ; Bai, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aqueous zinc‐ion batteries</topic><topic>Atomic structure</topic><topic>Channels</topic><topic>Degradation</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>grotthuss transfer</topic><topic>Hydrophilicity</topic><topic>Insertion</topic><topic>Interface stability</topic><topic>Kinetics</topic><topic>Low currents</topic><topic>Manganese dioxide</topic><topic>Oxygen enrichment</topic><topic>oxygen vacancy</topic><topic>proton intercalation</topic><topic>Protons</topic><topic>Shielding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yahui</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Han, Xiaomin</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yahui</au><au>Wang, Xinran</au><au>Zhang, Anqi</au><au>Han, Xiaomin</au><au>Yang, Jingjing</au><au>Chen, Wenxing</au><au>Zhao, Ran</au><au>Wu, Chuan</au><au>Bai, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2403136</spage><epage>n/a</epage><pages>e2403136-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Hollandite‐type manganese dioxide (α‐MnO2) is recognized as a promising cathode material upon high‐performance aqueous zinc‐ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co‐insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic‐zincophobic heterointerface, fulfilling the H+‐dominating diffusion with the state‐of‐the‐art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface‐engineered α‐MnO2 affords to the synergy of Mn electron t2g–eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α‐MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long‐lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+‐dominating Grotthuss transfer and lattice stabilization in α‐MnO2 toward reliable ZIBs.
Reconstructed MnO2 surface enables hydrophilic‐zincophobic shielding and simultaneous oxygen vacancy generation that facilitates H+ preferential Grotthuss transfer and accelerated desolvation kinetics while suppressing Zn2+ accommodation, synergistically boosting ultrastable cycle stability, improved rate capability, significantly reduced dissolution, and strengthened lattice stability for high‐performance Zn‐MnO2 batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202403136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2403136-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057693582 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | aqueous zinc‐ion batteries Atomic structure Channels Degradation Diffusion rate Electrode materials grotthuss transfer Hydrophilicity Insertion Interface stability Kinetics Low currents Manganese dioxide Oxygen enrichment oxygen vacancy proton intercalation Protons Shielding |
title | Tunneling Proton Grotthuss Transfer Channels by Hydrophilic‐Zincophobic Heterointerface Shielding for High‐Performance Zn‐MnO2 Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20Proton%20Grotthuss%20Transfer%20Channels%20by%20Hydrophilic%E2%80%90Zincophobic%20Heterointerface%20Shielding%20for%20High%E2%80%90Performance%20Zn%E2%80%90MnO2%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Yahui&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2403136&rft.epage=n/a&rft.pages=e2403136-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403136&rft_dat=%3Cproquest_wiley%3E3057693582%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2666-8cfca961f4c36bb8a6182a97002455baee60a52a2bc092e497270a558d3929b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112453464&rft_id=info:pmid/&rfr_iscdi=true |