Loading…

A Comprehensive Pyrolysis Mechanism of Binuclear Chromium-Based Complexes for Superior OER Activity

Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-05, Vol.16 (22), p.28664-28672
Main Authors: Gan, Meixing, Li, Li, Yang, Xixian, Rong, Hongwei, Wang, Zheng, Li, Yuebin, Zhang, Yuexing, Chen, Xueli, Peng, Xu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG–MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c04688