Loading…
Physico-chemical and biological characterization of synthetic and eggshell derived nanohydroxyapatite/carboxymethyl chitosan composites for pulp-dentin tissue engineering
Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nano...
Saved in:
Published in: | International journal of biological macromolecules 2024-06, Vol.271 (Pt 1), p.132620, Article 132620 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp–dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 μm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.132620 |