Loading…

DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI

A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In th...

Full description

Saved in:
Bibliographic Details
Published in:Network (Bristol) 2024-11, Vol.35 (4), p.520-561
Main Authors: Prasad, Vadamodula, Jeba Jingle, Issac Diana, Sriramakrishnan, Gopalsamy Venkadakrishnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In this research, these issues are overcome by introducing the DTDO-ZFNet for detection of brain tumour. The input Magnetic Resonance Imaging (MRI) image is fed to the pre-processing stage. Tumour areas are segmented by utilizing SegNet in which the factors of SegNet are biased using DTDO. The image augmentation is carried out using eminent techniques, such as geometric transformation and colour space transformation. Here, features such as GIST descriptor, PCA-NGIST, statistical feature and Haralick features, SLBT feature, and CNN features are extricated. Finally, the categorization of the tumour is accomplished based on ZFNet, which is trained by utilizing DTDO. The devised DTDO is a consolidation of DTBO and CDDO. The comparison of proposed DTDO-ZFNet with the existing methods, which results in highest accuracy of 0.944, a positive predictive value (PPV) of 0.936, a true positive rate (TPR) of 0.939, a negative predictive value (NPV) of 0.937, and a minimal false-negative rate (FNR) of 0.061%.
ISSN:0954-898X
1361-6536
1361-6536
DOI:10.1080/0954898X.2024.2351159